橢圓上有兩個(gè)動(dòng)點(diǎn),,則的最小值為(  )
A.6B.C.9D.
A

試題分析:根據(jù)題意,由于橢圓上有兩個(gè)動(dòng)點(diǎn)、,,a=6,b=3,c=3,那么結(jié)合橢圓的定義可知,
取得最小值,即為兩點(diǎn)距離的最小為故可知的最小值為6故答案為A.
點(diǎn)評(píng):主要是考查了橢圓的方程與性質(zhì)的運(yùn)用,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓:)上任意一點(diǎn)到兩焦點(diǎn)距離之和為,離心率為,左、右焦點(diǎn)分別為,,點(diǎn)是右準(zhǔn)線上任意一點(diǎn),過(guò)作直 線的垂線交橢圓于點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)證明:直線與直線的斜率之積是定值;
(3)點(diǎn)的縱坐標(biāo)為3,過(guò)作動(dòng)直線與橢圓交于兩個(gè)不同點(diǎn),在線段上取點(diǎn),滿足,試證明點(diǎn)恒在一定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為,直線交橢圓于不同的兩點(diǎn)。
(1)求橢圓的方程;
(2)若坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

時(shí)秒“嫦娥二號(hào)”探月衛(wèi)星由長(zhǎng)征三號(hào)丙運(yùn)載火箭送入近地點(diǎn)高度約公里、遠(yuǎn)地點(diǎn)高度約萬(wàn)公里的直接奔月橢圓(地球球心為一個(gè)焦點(diǎn))軌道Ⅰ飛行。當(dāng)衛(wèi)星到達(dá)月球附近的特定位置時(shí),實(shí)施近月制動(dòng)及軌道調(diào)整,衛(wèi)星變軌進(jìn)入遠(yuǎn)月面公里、近月面公里(月球球心為一個(gè)焦點(diǎn))的橢圓軌道Ⅱ繞月飛行,之后衛(wèi)星再次擇機(jī)變軌進(jìn)入以為圓心、距月面公里的圓形軌道Ⅲ繞月飛行,并開(kāi)展相關(guān)技術(shù)試驗(yàn)和科學(xué)探測(cè)。已知地球半徑約為公里,月球半徑約為公里。
(Ⅰ)比較橢圓軌道Ⅰ與橢圓軌道Ⅱ的離心率的大;
(Ⅱ)以為右焦點(diǎn),求橢圓軌道Ⅱ的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)橢圓C:的左、右焦點(diǎn)分別為、,P是C上的點(diǎn),
=,則C的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)在圓上,直線交橢圓于、兩點(diǎn).
(1)求橢圓的方程;
(2)若(為坐標(biāo)原點(diǎn)),求的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓過(guò)點(diǎn),上、下焦點(diǎn)分別為、,
向量.直線與橢圓交于兩點(diǎn),線段中點(diǎn)為
(1)求橢圓的方程;
(2)求直線的方程;
(3)記橢圓在直線下方的部分與線段所圍成的平面區(qū)域(含邊界)為,若曲線
與區(qū)域有公共點(diǎn),試求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,設(shè)橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1,F(xiàn)2,線段OF1,OF2的中點(diǎn)分別為B1,B2,且△AB1B2是面積為4的直角三角形.

(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過(guò)B1作直線l交橢圓于P,Q兩點(diǎn),使PB2⊥QB2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
如圖,已知橢圓,是橢圓的頂點(diǎn),若橢圓的離心率,且過(guò)點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)作直線,使得,且與橢圓相交于兩點(diǎn)(異于橢圓的頂點(diǎn)),設(shè)直線和直線的傾斜角分別是,求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案