若f(n)為n2+1(n∈N*)的各位數(shù)字之和,如 142+1=197,1+9+7=17則f(14)=17,記f1(n)=f(n),f2(n)=f[f1(n)],…,fk+1(n)=f[fk(n)]k∈N*,則f2010(8)=
8
8
分析:由已知中f(n)為n2+1(n∈N*)的各位數(shù)字之和,f1(n)=f(n),f2(n)=f[f1(n)],…,fk+1(n)=f[fk(n)],我們可以逐步求出f1(8),f2(8),f3(8),f4(8),…的值,并分析其值變化的規(guī)律,進而求出結(jié)果.
解答:解:f1(8)=f(8)=64+1=656+5=11
f2(8)=f[f1(8)]=f(11)=121+1=122=1+2+2=5
f3(8)=f[f2(8)]=f(5)=25+1=26=8
f4(8)=f[f3(8)]=f(8)

所以f2010(8)=f3(8)=8
故答案為:8
點評:本題考查的知識點是函數(shù)的值,函數(shù)的周期性,其中根據(jù)已知中的新定義,逐步求出f1(8),f2(8),f3(8),f4(8),…的值,并分析其值變化的周期性規(guī)律,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

7、若f(n)為n2+1(n∈N*)的各位數(shù)字之和,如142+1=197,1+9+7=17,則f(14)=17;記f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,則f2008(8)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、若f(n)為n2+1(n∈N*)的各位數(shù)字之和,如142+1=197,1+9+7=17,則f(14)=17,記f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,則f2008(8)=
11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(n)為n2+1(n∈N*)的各位數(shù)字之和,如142+1=197,1+9+7=17則f(14)=17,記f1(n)=f(n),f2(n)=f(f1(n)),fk+1(n)=f(fk(n))k∈N*則f2012(8)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(n)為n2+1(n∈N*)的各位數(shù)字之和,如142+1=197,1+9+7=17,則f(14)=17,記f1(n)=f(n),f2(n)=f〔f1(n)〕,…,fk+1(n)=f〔fk(n)〕,k∈N*,則f2012(8)=
5
5

查看答案和解析>>

同步練習(xí)冊答案