已知,求證:

(1);

(2)

答案:略
解析:

證明:因為,所以

,,

所以(1);

(2)


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:047

已知,求證:

(1)f(x)R上的增函數(shù);

(2)滿足等式f(x)=0的實數(shù)x的值至多只有一個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

如圖所示,已知,求證:(1)

(2)BD=2cm,AD=5cmAC=6cm,求CE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線C1:y2=2px(p>0)的焦點F以及橢圓C2數(shù)學公式的上、下焦點及左、右頂點均在圓O:x2+y2=1上.
(Ⅰ)求拋物線C1和橢圓C2的標準方程;
(Ⅱ)過點F的直線交拋物線C1于A、B兩不同點,交y軸于點N,已知數(shù)學公式,求證:λ12為定值.
(Ⅲ)直線l交橢圓C2于P、Q兩不同點,P、Q在x軸的射影分別為P'、Q',數(shù)學公式,若點S滿足:數(shù)學公式,證明:點S在橢圓C2上.

查看答案和解析>>

科目:高中數(shù)學 來源:山東省模擬題 題型:解答題

已知拋物線C1:y2=2px(p>0)的焦點F以及橢圓C2的上、下焦點及左、右頂點均在圓O:x2+y2=1上,
(Ⅰ)求拋物線C1和橢圓C2的標準方程;
(Ⅱ)過點F的直線交拋物線C1于A、B兩不同點,交y軸于點N,已知,求證:λ12為定值;
(Ⅲ)直線l交橢圓C2于P、Q兩不同點,P、Q在x軸的射影分別為P′、Q′,,若點S滿足:,證明:點S在橢圓C2上。

查看答案和解析>>

科目:高中數(shù)學 來源:河南省月考題 題型:解答題

已知拋物線C1:y2=2px(p>0)的焦點F以及橢圓C2的上、下焦點及左、右頂點均在圓O:x2+y2=1上.
(1)求拋物線C1和橢圓C2的標準方程;
(2)過點F的直線交拋物線C1于A、B兩不同點,交y軸于點N,已知,求證:λ12為定值.
(3)直線l交橢圓C2于P、Q兩不同點,P、Q在x軸的射影分別為P'、Q',,若點S滿足:,證明:點S在橢圓C2上.

查看答案和解析>>

同步練習冊答案