【題目】如圖,在直三棱柱中,,,為上的點(diǎn),平面.
(1)求證:平面;
(2)若,且,求三棱錐的體積.
【答案】(1)見解析;(2)
【解析】
【試題分析】(1)運(yùn)用線面垂直判定定理推證;(2)先求三棱錐的高與底面面積再運(yùn)用三棱錐的體積公式求解:
(1)連結(jié)ED,
∵平面AB1C∩平面A1BD=ED,B1C∥平面A1BD,
∴B1C∥ED,
∵E為AB1中點(diǎn),∴D為AC中點(diǎn),
∵AB=BC, ∴BD⊥AC①
【法一】:由A1A⊥平面ABC,平面ABC,得A1A⊥BD②,
由①②及A1A、AC是平面內(nèi)的兩條相交直線,得BD⊥平面.
【法二】:由A1A⊥平面ABC,A1A平面
∴平面⊥平面ABC ,又平面 平面ABC=AC,得BD⊥平面.
(2)由得BC=BB1=1,
由(1)知,又得,
∵,∴,
∴
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時(shí)全修好;單位對學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個(gè)大致統(tǒng)計(jì),具體數(shù)據(jù)如表:
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總計(jì) | |
學(xué)習(xí)雷鋒精神前 | 50 | 150 | 200 |
學(xué)習(xí)雷鋒精神后 | 30 | 170 | 200 |
總計(jì) | 80 | 320 | 400 |
求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?
請說明是否有以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神
有關(guān)?參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在函數(shù)()的所有切線中,有且僅有一條切線與直線垂直.
(1)求的值和切線的方程;
(2)設(shè)曲線在任一點(diǎn)處的切線傾斜角為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某觀光海域AB段的長度為3百公里,一超級快艇在AB段航行,經(jīng)過多次試驗(yàn)得到其每小時(shí)航行費(fèi)用Q(單位:萬元)與速度v(單位:百公里/小時(shí))(0≤v≤3)的以下數(shù)據(jù):
0 | 1 | 2 | 3 | |
0 | 0.7 | 1.6 | 3.3 |
為描述該超級快艇每小時(shí)航行費(fèi)用Q與速度v的關(guān)系,現(xiàn)有以下三種函數(shù)模型供選擇:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b.
(1)試從中確定最符合實(shí)際的函數(shù)模型,并求出相應(yīng)的函數(shù)解析式;
(2)該超級快艇應(yīng)以多大速度航行才能使AB段的航行費(fèi)用最少?并求出最少航行費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的坐標(biāo)方程為,若直線與曲線相切.
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點(diǎn)、于原點(diǎn)構(gòu)成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:
①是偶函數(shù);②在區(qū)間單調(diào)遞減;
③在有個(gè)零點(diǎn);④的最大值為.
其中所有正確結(jié)論的編號是( )
A.①②④B.②④C.①④D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)
某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個(gè)等級,等級系數(shù)X依次為1,2,……,8,其中X≥5為標(biāo)準(zhǔn)A,X≥3為標(biāo)準(zhǔn)B,已知甲廠執(zhí)行標(biāo)準(zhǔn)A生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為6元/件;乙廠執(zhí)行標(biāo)準(zhǔn)B生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為4元/件,假定甲、乙兩廠得產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn)
(I)已知甲廠產(chǎn)品的等級系數(shù)X1的概率分布列如下所示:
且X1的數(shù)字期望EX1=6,求a,b的值;
(II)為分析乙廠產(chǎn)品的等級系數(shù)X2,從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取30件,相應(yīng)的等級系數(shù)組成一個(gè)樣本,數(shù)據(jù)如下:
3 5 3 3 8 5 5 6 3 4
6 3 4 7 5 3 4 8 5 3
8 3 4 3 4 4 7 5 6 7
用這個(gè)樣本的頻率分布估計(jì)總體分布,將頻率視為概率,求等級系數(shù)X2的數(shù)學(xué)期望.
在(I)、(II)的條件下,若以“性價(jià)比”為判斷標(biāo)準(zhǔn),則哪個(gè)工廠的產(chǎn)品更具可購買性?說明理由.
注:(1)產(chǎn)品的“性價(jià)比”=;
(2)“性價(jià)比”大的產(chǎn)品更具可購買性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),若函數(shù)與函數(shù)的圖像總有兩個(gè)交點(diǎn),設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為,.
①求的取值范圍;
②求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com