【題目】定義在D上的函數(shù) ,若滿足: ,都有 成立,則稱 D上的有界函數(shù),其中M稱為函數(shù) 的上界.
(I)設 ,證明: 上是有界函數(shù),并寫出 所有上界的值的集合;
(II)若函數(shù) 上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.

【答案】解:(I)證明:因為

所以 上是增函數(shù). 所以 . 即 ,

所以 ,所以 是有界函數(shù).

所以,上界M滿足M≥1,所有上界M的集合為 ..

(II)解:因為函數(shù) 上是以3為上界的有界函數(shù),

所以 上恒成立.

所以 , ,

,則 ,所以 上恒成立,

所以, 上恒成立,

,則 上是減函數(shù),

所以 ;

,則 上是增函數(shù),

所以 ,.

所以,實數(shù)a的取值范圍


【解析】(1)由題意結合函數(shù)的單調性即可得證結論故 f ( x ) 所有上界的值得集合是 [ 1 , + ∞ )。(2)利用題意得到關于a的不等式求解不等式即得a的取值范圍。
【考點精析】本題主要考查了函數(shù)單調性的性質的相關知識點,需要掌握函數(shù)的單調區(qū)間只能是其定義域的子區(qū)間 ,不能把單調性相同的區(qū)間和在一起寫成其并集才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式 恒成立,則實數(shù) 的取值范圍是 ( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐P﹣ABCD中,底面ABCD為直角梯形,∠BAD=∠ADC=90°,DC=2AB=2AD,BC⊥PD,E,F(xiàn)分別是PB,BC的中點.
求證:
(1)PC∥平面DEF;
(2)平面PBC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a , b , c是正整數(shù),且a∈[70,80),b∈[80,90),c∈[90,100],當數(shù)據a , b , c的方差最小時,a+b+c的值為( )
A.252或253
B.253或254
C.254或255
D.267或268

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲參加AB , C三個科目的學業(yè)水平考試,其考試成績合格的概率如下表,假設三個科目的考試甲是否成績合格相互獨立.

科目A

科目B

科目C

(I)求甲至少有一個科目考試成績合格的概率;
(Ⅱ)設甲參加考試成績合格的科目數(shù)量為X , 求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)滿足:在定義域內存在實數(shù),使得成立,則稱函數(shù)為“的飽和函數(shù)”.給出下列四個函數(shù):①;②; ③;④.其中是“的飽和函數(shù)”的所有函數(shù)的序號是______________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線 的上方,且曲線 上的任意一點到點 的距離比到直線 的距離都小1.
(Ⅰ)求曲線 的方程;
(Ⅱ)設 ,過點 的直線與曲線 相交于 兩點.
①若 是等邊三角形,求實數(shù) 的值;
②若 ,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《中華人民共和國個人所得稅》規(guī)定,公民月工資、薪金所得不超過3500元的部分不納稅,超過3500元的部分為全月納稅所得額,此項稅款按下表分段累計計算:

已知張先生的月工資、薪金所得為10000元,問他當月應繳納多少個人所得稅?

設王先生的月工資、薪金所得為元,當月應繳納個人所得稅為元,寫出的函數(shù)關系式;

(3)已知王先生一月份應繳納個人所得稅為303元,那么他當月的個工資、薪金所得為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,0<φ<π),其導函數(shù)f′(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為(
A.f(x)=4sin( x+ π)
B.f(x)=4sin( x+
C.f(x)=4sin( x+
D.f(x)=4sin( x+

查看答案和解析>>

同步練習冊答案