【題目】已知函數(shù)(其中

() 在其定義域內(nèi)為單調(diào)遞減函數(shù),求的取值范圍;

() 是否存在實(shí)數(shù)使得當(dāng)時(shí),不等式恒成立,如果存在,求的取值范圍,如果不存在,說(shuō)明理由其中是自然對(duì)數(shù)的底數(shù),=2.71828.

【答案】();() .

【解析】

試題分析:()首先求得導(dǎo)函數(shù),然后分、討論函數(shù)的單調(diào)性,由此求得的取值范圍;() 首先求得導(dǎo)函數(shù),然后分、討論函數(shù)的單調(diào)性并求得其極值,然后根據(jù)各段函數(shù)的最值求得的取值范圍.

試題解析:() 由于,其中,

只需時(shí)恒成立,

當(dāng)時(shí),,于是為減函數(shù),

當(dāng)時(shí),由時(shí)恒成立,即恒成立,

可知當(dāng)時(shí),,

,這與符,舍去.

綜上所述,的取值范圍是.

() .

() 當(dāng)時(shí),,于是為減函數(shù),則在也為減函數(shù),

恒成立,不合題意,舍去

() 當(dāng)時(shí),由.列表得

x

(0,)

(,)

0

極大值

,即,此時(shí)上單調(diào)遞減,

,而,

于是恒成立,不合題意,舍去.

,即時(shí),

此時(shí)在(,上為增函數(shù),在(,)上為減函數(shù),

要使恒有恒成立,則必有

所以

由于,則,所以.

綜上所述,存在實(shí)數(shù),使得恒成立

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)橢圓的中心為原點(diǎn),長(zhǎng)軸在軸上,上頂點(diǎn)為,左、右焦點(diǎn)分別為,線(xiàn)段的中點(diǎn)分別為,且是面積為的直角三角形.

(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;

(2)過(guò)作直線(xiàn)交橢圓于兩點(diǎn),使,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為2,左、右頂點(diǎn)分別為,是橢圓上一點(diǎn),記直線(xiàn)的斜率為,且有.

(1)求橢圓的方程;

(2)若直線(xiàn)與橢圓交于兩點(diǎn),以為直徑的圓經(jīng)過(guò)原點(diǎn),且線(xiàn)段的垂直平分線(xiàn)在軸上的截距為,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某化工廠近期要生產(chǎn)一批化工試劑,經(jīng)市場(chǎng)調(diào)查得知,生產(chǎn)這批試劑廠家的生產(chǎn)成本有以下三個(gè)部分:生產(chǎn)1單位試劑需要原料費(fèi)50元;支付所有職工的工資總額由7500元的基本工資和每生產(chǎn)1單位試劑補(bǔ)貼所有職工20元組成;后續(xù)保養(yǎng)的平均費(fèi)用是每單位試劑的總產(chǎn)量為單位,.

1把生產(chǎn)每單位試劑的成本表示為的函數(shù)關(guān)系,并求的最小值;

2如果產(chǎn)品全部賣(mài)出,據(jù)測(cè)算銷(xiāo)售額關(guān)于產(chǎn)量單位的函數(shù)關(guān)系為,試問(wèn):當(dāng)產(chǎn)量為多少時(shí)生產(chǎn)這批試劑的利潤(rùn)最高?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為常數(shù),函數(shù)

(1)當(dāng)時(shí),求函數(shù)的最小值;

(2)若有兩個(gè)極值點(diǎn)):

求實(shí)數(shù)的取值范圍;

求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1求函數(shù)的最小值及曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,點(diǎn)為坐標(biāo)原點(diǎn),若橢圓與曲線(xiàn)的交點(diǎn)分別為上),且兩點(diǎn)滿(mǎn)足

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)橢圓上異于其頂點(diǎn)的任一點(diǎn),作的兩條切線(xiàn),切點(diǎn)分別為,且直線(xiàn)軸、軸上的截距分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知圓及點(diǎn),

(1)若直線(xiàn)平行于,與圓相交于,兩點(diǎn),,求直線(xiàn)的方程;

(2)在圓上是否存在點(diǎn),使得?若存在,求點(diǎn)的個(gè)數(shù);若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】表示中的最大值,如.已知函數(shù),.

(1)設(shè),求函數(shù)上零點(diǎn)的個(gè)數(shù);

(2)試探究是否存在實(shí)數(shù),使得對(duì)恒成立?若存在,求的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案