已知a>0,且a≠1,若loga2=m,loga3=n,則a3m+2n=
 
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:化對數(shù)式為指數(shù)式,然后利用有理指數(shù)冪的運算性質(zhì)化簡求值.
解答: 解:∵loga2=m,loga3=n,
∴am=2,an=3,
則a3m+2n=(am3•(an2=23•32=72.
故答案為:72.
點評:本題考查了對數(shù)的運算性質(zhì),考查了有理指數(shù)冪的化簡求值,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓方程(x-1)2+(y-1)2=9,過點A(2,3)作圓的任意弦,則中點P的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=2x+b,則f(-1)=(  )
A、0B、2C、-2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求半徑為4,與圓x2+y2-4x-2y-4=0相切,且和直線y=0相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差為2,它的前n項和Sn=pn2+2n,n∈N*
(Ⅰ)求p的值及an
(Ⅱ)若bn=2n-1•(an-1),求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
2
lnx-
1
2
x,g(x)=2cos2x+sinx+a.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)對于任意x1∈[
1
e
,e],總存在x2∈[0,
π
2
],使得f(x1)≤g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)集A={a2,a+1,-3}與數(shù)集B={a-3,a-2,a2+1},若A∩B={-3},求A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=x3-2x2+mx,當(dāng)x=
1
3
時,函數(shù)取得極大值,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,對任意的正整數(shù)n,都有an=5Sn+1成立.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log4|
1
an
|,求數(shù)列{
1
bnbn+1
}前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案