在xoy平面上有一系列點P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對每個正整數(shù)n,以點Pn為圓心的⊙Pn與x軸及射線y=x,(x≥0)都相切,且⊙Pn與⊙Pn+1彼此外切.若x1=1,且xn+1<xn(n∈N*).
(1)求證:數(shù)列{xn}是等比數(shù)列,并求數(shù)列{xn}的通項公式;
(2)設(shè)數(shù)列{an}的各項為正,且滿足an=1,
求證:a1x1+a2x2+a3x3+…+anxn,(n≥2)
(3)對于(2)中的數(shù)列{an},當(dāng)n>1時,求證:

【答案】分析:(1)由圓Pn與P(n+1)相切,且P(n+1)與x軸相切可知Rn=Yn,R(n+1)=Y(n+1),且兩圓心間的距離就等于兩半徑之和進(jìn)而得到,整理得證.
(2)由,可證,進(jìn)而得從而可證
(3)先證a1>a2>…>an>0,再令:,從而利于放縮法可證.
解答:解:(1)點列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…必在射線,
為⊙Pn的半徑,
∵⊙Pn與⊙Pn+1外切,
①…(3分)
化簡①式得:3xn+12-10xnxn+1+3xn2=0,解得:xn+1=3xn,
∵xn+1<xn,∴,∴數(shù)列{xn}是等比數(shù)列,∵x1=1,則…(5分)
(2),而an>0,xn>0,
,∴,∵a1=1,

…(8分)
設(shè)

當(dāng)n=2時,,必有S2<T2
當(dāng)n>2時,

=…(13分)
(3)∵,∴1=a1>a2>…>an>0
令:,則=…(18分)
∵0<a2=…20分.
點評:本題以相切為素材,考查數(shù)列與解析幾何的綜合,考查數(shù)列與不等式,技巧性強(qiáng),難度大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在xoy平面上有一系列點P1(x1,y1),P2(x2,y2)…,Pn(xn,yn),…,(n∈N*),點Pn在函數(shù)y=x2(x≥0)的圖象上,以點Pn為圓心的圓Pn與x軸都相切,且圓Pn與圓Pn+1又彼此外切.若x1=1,且xn+1<xnx1=1.
(I)求數(shù)列{xn}的通項公式;
(II)設(shè)圓Pn的面積為SnTn=
S1
+
S2
+…+
Sn
,求證:Tn
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在xoy平面上有一系列點P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對每個正整數(shù)n,以點Pn為圓心的⊙Pn與x軸及射線y=
3
x,(x≥0)都相切,且⊙Pn與⊙Pn+1彼此外切.若x1=1,且xn+1<xn(n∈N*).
(1)求證:數(shù)列{xn}是等比數(shù)列,并求數(shù)列{xn}的通項公式;
(2)設(shè)數(shù)列{an}的各項為正,且滿足an
xnan-1
xn+an-1
,a1
=1,
求證:a1x1+a2x2+a3x3+…+anxn
5
4
-
1
3n-1
,(n≥2)
(3)對于(2)中的數(shù)列{an},當(dāng)n>1時,求證:(1-an)2[
a
2
2
(1-
a
2
2
)
2
+
a
3
3
(1-
a
3
3
)
2
+…+
a
n
n
(1-
a
n
n
)
2
]>
4
5
-
1
1+an+
a
2
n
+…+
a
n
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在xoy平面上有一系列點P1(x1,y1)、P2(x2,y2)┉Pn(xn,yn),對于每個自然數(shù)n,點Pn(xn,yn)位于函數(shù)y=x2(x≥0)圖象上,以點Pn為圓心的⊙Pn與x軸相切,又與⊙Pn+1外切,若x1=1,xn+1<xn(n∈N+),則數(shù)列{xn}的通項公式xn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在xOy平面上有一系列點P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對每個自然數(shù)n,點Pn位于函數(shù)y=x2(x≥0)的圖象上,以點Pn為圓心的⊙Pn與x軸都相切,且⊙Pn與⊙Pn+1又彼此外切.若x1=1且xn+1<xn?(n∈N*).

(1)求證:數(shù)列{1xn}是等差數(shù)列;

(2)設(shè)⊙Pn的面積為Sn,Tn=+…+,求證:Tn.

查看答案和解析>>

同步練習(xí)冊答案