精英家教網 > 高中數學 > 題目詳情

【題目】集合L={l|l與直線y=x相交,且以交點的橫坐標為斜率}.若直線l′∈L,點P(﹣1,2)到直線l′的最短距離為r,則以點P為圓心,r為半徑的圓的標準方程為

【答案】(x+1)2+(y﹣2)2=4
【解析】解:設直線l∈L,其方程為:y=kx+b,聯立 ,解得x=

=k,化為b=k﹣k2

點P(﹣1,2)到直線l的距離d= = = ≥2,當且僅當k=0時取等號.

當k=0時,b=0,此時直線l的方程為:y=0,

此時(﹣1,2)與集合L中的直線:y=0的最小距離為r=2,

∴以點P為圓心,r為半徑的圓的標準方程為(x+1)2+(y﹣2)2=4.

所以答案是:(x+1)2+(y﹣2)2=4.

【考點精析】根據題目的已知條件,利用圓的標準方程的相關知識可以得到問題的答案,需要掌握圓的標準方程:;圓心為A(a,b),半徑為r的圓的方程.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數f(x)=x2﹣ax+a+3,g(x)=ax﹣2a.
(1)若函數h(x)=f(x)﹣g(x)在[﹣2,0]上有兩個零點,求實數a的取值范圍;
(2)若存在x0∈R,使得f(x0)≤0與g(x0)≤0同時成立,求實數a的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校舉行“慶元旦”教工羽毛球單循環(huán)比賽(任意兩個參賽隊只比賽一場),共有高一、高二、高三三個隊參賽,高一勝高二的概率為 ,高一勝高三的概率為 ,高二勝高三的概率為P,每場勝負獨立,勝者記1分,負者記0分,規(guī)定:積分相同者高年級獲勝.
(Ⅰ)若高三獲得冠軍概率為 ,求P.
(Ⅱ)記高三的得分為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若Sn為等差數列{an}的前n項和,且a1=1,S10=55.記bn=[lnan],其中[x]表示不超過x的最大整數,如[0.9]=0,[lg99]=1.則數列{bn}的前2017項和為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx+ax2(a∈R),y=f(x)的圖象連續(xù)不間斷.
(1)求函數y=f(x)的單調區(qū)間;
(2)當a=1時,設l是曲線y=f(x)的一條切線,切點是A,且l在點A處穿過函數y=f(x)的圖象(即動點在點A附近沿曲線y=f(x)運動,經過點A時,從l的一側進入另一側),求切線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0).

(1)若橢圓的離心率為 ,且點(1, )在橢圓上,
①求橢圓的方程;
②設P(﹣1,﹣ ),R、S分別為橢圓C的右頂點和上頂點,直線PR和PS與y軸和x軸相交于點M,N,求直線MN的方程.
(2)設D(b,0),過D點的直線l與橢圓C交于E、F兩點,且E、F均在y軸的右側, =2 ,求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖扇形AOB是一個觀光區(qū)的平面示意圖,其中∠AOB的圓心角為 ,半徑OA為1Km,為了便于游客觀光休閑,擬在觀光區(qū)內鋪設一條從入口A到出口B的觀光道路,道路由圓弧AC、線段CD及線段BD組成.其中D在線段OB上,且CD∥AO,設∠AOC=θ,

(1)用θ表示CD的長度,并寫出θ的取值范圍.
(2)當θ為何值時,觀光道路最長?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】圖中,小方格是邊長為1的正方形,圖中粗線畫出的是某幾何體的三視圖,且該幾何體的頂點都在同一球面上,則該幾何體的外接球的表面積為(  )

A.32π
B.48π
C.50π
D.64π

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a1+2a2+…+nan=(n﹣1)2n+1+2,n∈N*
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若bn= ,Tn=b1+b2+…+bn , 求證:對任意的n∈N* , Tn

查看答案和解析>>

同步練習冊答案