【題目】如圖,四邊形ABCD是正方形,延長CD至E,使得DE=CD.若動點P從點A出發(fā),沿正方形的邊按逆時針方向運動一周回到A點,其下列敘述正確的是( )

A. 滿足λ+μ=2的點P必為BC的中點

B. 滿足λ+μ=1的點P有且只有一個

C. λ+μ的最大值為3

D. λ+μ的最小值不存在

【答案】D

【解析】

由題意,不妨設(shè)正方形的邊長為1,建立如圖所示的坐標系,則,故 ,當(dāng)時, ,此時點重合,滿足,但P不是的中點,故A錯誤;當(dāng)時, ,此時點P與D重合,滿足;當(dāng)時, ,此時點P為AD的中點,滿足,故滿足的點不唯一,故B錯誤;

當(dāng)P∈AB時,有,可得,故有,當(dāng)時,有,所以,故,故,當(dāng)時,有,所以,故,故,當(dāng)時,有,所以,故.綜上可得,故C正確,D錯誤.應(yīng)選答案C。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著手機的發(fā)展,微信越來越成為人們交流的一種方式.某機構(gòu)對使用微信交流的態(tài)度進行調(diào)查,隨機抽取了50人,他們年齡的頻數(shù)分布及對使用微信交流贊成人數(shù)如表:

年齡(單位:歲)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

3

10

12

7

2

1

(1)若以年齡45歲為分界點,由以上統(tǒng)計數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有的把握認為使用微信交流的態(tài)度與人的年齡有關(guān):

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計

贊成

不贊成

合計

(2)若從年齡在,的被調(diào)查人中各隨機選取兩人進行追蹤調(diào)查.記選中的4人中贊成使用微信交流的人數(shù)為,求隨機變量的分布列及數(shù)學(xué)期望

參考數(shù)據(jù)如下:

0.050

0.010

0.001

3.841

6.635

10.828

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 中, 的中點, , .將沿

折起,使點與圖中點重合.

(Ⅰ)求證:;

(Ⅱ)當(dāng)三棱錐的體積取最大時,求二面角的余弦值;

(Ⅲ)在(Ⅱ)的條件下,試問在線段上是否存在一點,使與平面所成的角的正弦值為?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平行四邊形直平分,現(xiàn)將沿如圖2,使

求證:直線

平面平面成的角銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的內(nèi)角A,B,C的對邊分別為a,b,c,已知

(1)求角B的大;

(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:關(guān)于x的方程x2ax20無實根,命題q:函數(shù)f(x)logax(0,+)上單調(diào)遞增,若pq為假命題,pq真命題,求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出定義在上的兩個函數(shù),.

1處取最值.求的值;

2若函數(shù)在區(qū)間上單調(diào)遞減,求實數(shù)的取值范圍;

3試確定函數(shù)的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),已知處的切線相同.

1的值及切線的方程;

2設(shè)函數(shù),若存在實數(shù)使得關(guān)于的不等式上的任意實數(shù)恒成立,求的最小值及對應(yīng)的的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1的單調(diào)區(qū)間和極值;

2上的最小值

3設(shè),若對恒成立求實數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊答案