已知等差數(shù)列的前n項(xiàng)和為,公差成等比數(shù)列
(1)求數(shù)列的通項(xiàng)公式;
(2)若從數(shù)列中依次取出第2項(xiàng)、第4項(xiàng)、第8項(xiàng),,按原來(lái)順序組成一個(gè)新數(shù)列,且這個(gè)數(shù)列的前的表達(dá)式.

(1);(2).

解析
試題分析:(1)依題意,建立的方程組 解出,寫出通項(xiàng)公式
(2)由于 因此,應(yīng)用分組求和法即可得到.
試題解析:(1)依題意,得:
      2分                4分
      6分
(2)        8分
考點(diǎn):等差數(shù)列的通項(xiàng)公式及其求和公式,等比數(shù)列的求和,“分組求和法”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知數(shù)列中,是其前項(xiàng)和,若,且,則________,______;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知數(shù)列,,…,那么數(shù)列=前n項(xiàng)和為_____  _  _   ___。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,,
(1)設(shè).證明:數(shù)列是等差數(shù)列;
(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列{}是等差數(shù)列,數(shù)列{}的前項(xiàng)和滿足,,且
(1)求數(shù)列{}和{}的通項(xiàng)公式:
(2)設(shè)為數(shù)列{}的前項(xiàng)和,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等比數(shù)列中,已知
(1)求數(shù)列的通項(xiàng)公式及前項(xiàng)和
(2)記,求的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn.已知an+1=2Sn+2()
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在an與an+1之間插入n個(gè)數(shù),使這n+2個(gè)數(shù)組成一個(gè)公差為dn的等差數(shù)列,
①在數(shù)列{dn}中是否存在三項(xiàng)dm,dk,dp(其中m,k,p成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項(xiàng),若不存在,說(shuō)明理由;
②求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)同時(shí)滿足:
①不等式的解集有且只有一個(gè)元素;
②在定義域內(nèi)存在,使得不等式成立.
數(shù)列的通項(xiàng)公式為.
(1)求函數(shù)的表達(dá)式; 
(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知連續(xù)個(gè)正整數(shù)總和為,且這些數(shù)中后個(gè)數(shù)的平方和與前個(gè)數(shù)的平方和之差為.若,則的值為       

查看答案和解析>>

同步練習(xí)冊(cè)答案