【題目】已知函數(shù), .
(Ⅰ)若,求曲線在點處的切線方程;
(Ⅱ)當(dāng)時,函數(shù)的兩個極值點為, ,且.求證: .
【答案】(1) ;(2)證明見解析.
【解析】試題分析:(1)對求導(dǎo)數(shù),求出可得切線斜率,因為切點為有,根據(jù)點斜式可得切線方程;(2)在上有兩個不等的實根,即有兩個不等的實根, ,可得,且, ,令,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求其最小值,進(jìn)而可得結(jié)論.
由的關(guān)系,用把表示出來,求出的表達(dá)式與取值范圍即可得到結(jié)論.
(Ⅰ)因為,所以, ,于是有:
, ,切點為.
故切線方程為.
(Ⅱ)因為函數(shù)有兩個極值點,所以在上有兩個不等的實根,
即有兩個不等的實根, ,可得,且,
因為,則,可得.
, ,
令, , ,
,又, 時, ,
而,故在上恒成立,
所以在上恒成立,
即在上單調(diào)遞減,
所以,得證.
【方法點晴】本題主要考查利用導(dǎo)數(shù)求曲線切線以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的極值以及不等式證明問題,屬于難題.求曲線切線方程的一般步驟是:(1)求出在處的導(dǎo)數(shù),即在點 出的切線斜率(當(dāng)曲線在處的切線與軸平行時,在 處導(dǎo)數(shù)不存在,切線方程為);(2)由點斜式求得切線方程.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)過原點作函數(shù)圖象的切線,求切點的橫坐標(biāo);
(2)對,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l過點P (3, )且傾斜角為.在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為.
(Ⅰ)求直線l的一個參數(shù)方程和圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線l交于點A,B,求的值.
(2)已知函數(shù).
(Ⅰ)求函數(shù)的最小值;
(Ⅱ)若正實數(shù)滿足,且對任意的正實數(shù)恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, 為直角, .沿的中位線,將平面折起,使得,得到四棱錐.
(Ⅰ)求證: 平面;
(Ⅱ)求三棱錐的體積;
(Ⅲ)是棱的中點,過做平面與平面平行,設(shè)平面截四棱錐所得截面面積為,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行的“三色球”購物摸獎活動規(guī)定:在一次摸獎中,摸獎?wù)呦葟难b有3個紅球與4個白球的袋中任意摸出3個球,再從裝有1個藍(lán)球與2個白球的袋中任意摸出1個球,根據(jù)摸出4個球中紅球與藍(lán)球的個數(shù),設(shè)一、二、三等獎如下:
獎級 | 摸出紅、藍(lán)球個數(shù) | 獲獎金額 |
一等獎 | 3紅1藍(lán) | 200元 |
二等獎 | 3紅0藍(lán) | 50元 |
三等獎 | 2紅1藍(lán) | 10元 |
其余情況無獎且每次摸獎最多只能獲得一個獎級.
(1)求一次摸獎恰好摸到1個紅球的概率;
(2)求摸獎?wù)咴谝淮蚊勚蝎@獎金額X的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圖①②都是表示輸出所有立方小于1 000的正整數(shù)的程序框圖,則圖中應(yīng)分別補(bǔ)充的條件為( )
、佟 、
A. ①n3≥1 000?、趎3<1 000?
B. ①n3≤1 000?、趎3≥1 000?
C. ①n3<1 000?、趎3≥1 000?
D. ①n3<1 000?、趎3<1 000?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面底面,為正三角形,,,點,分別為線段、的中點,、分別為線段、上一點,且,.
(1)確定點的位置,使得平面;
(2)試問:直線上是否存在一點,使得平面與平面所成銳二面角的大小為,若存在,求的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn) , 兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測, 產(chǎn)品的利潤與投資關(guān)系如圖(1)所示; 產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖(2)所示(注:利潤和投資單位:萬元).
(1)分別將 , 兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(2)已知該企業(yè)已籌集到 萬元資金,并將全部投入 , 兩種產(chǎn)品的生產(chǎn).問怎樣分配這 萬元投資,才能使該企業(yè)獲得最大利潤?其最大利潤約為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年時紅軍長征勝利80周年,某市電視臺舉辦紀(jì)念紅軍長征勝利80周年知識問答,宣傳長征精神.首先在甲、乙、丙、丁四個不同的公園進(jìn)行支持簽名活動,其次在各公園簽名的人中按分層抽樣的方式抽取10名幸運之星,每人獲得一個紀(jì)念品,其數(shù)據(jù)表格如下:
公園 | 甲 | 乙 | 丙 | 丁 |
獲得簽名人數(shù) | 45 | 60 | 30 | 15 |
(Ⅰ)求此活動中各公園幸運之星的人數(shù);
(Ⅱ)從乙和丙公園的幸運之星中任選兩人接受電視臺記者的采訪,求這兩人均來自乙公園的概率;
(Ⅲ)電視臺記者對乙公園的簽名人進(jìn)行了是否有興趣研究“紅軍長征”歷史的問卷調(diào)查,統(tǒng)計結(jié)果如下(單位:人):
有興趣 | 無興趣 | 合計 | |
男 | 25 | 5 | 30 |
女 | 15 | 15 | 30 |
合計 | 40 | 20 | 60 |
據(jù)此判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為有興趣研究“紅軍長征”歷史與性別有關(guān).
臨界值表:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
參考公式: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com