【題目】在平面直角坐標(biāo)系中,已知橢圓的中心為坐標(biāo)原點(diǎn)焦點(diǎn)在軸上,右頂點(diǎn)到右焦點(diǎn)的距離與它到右準(zhǔn)線的距離之比為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若是橢圓上關(guān)于軸對稱的任意兩點(diǎn),設(shè),連接交橢圓于另一點(diǎn).求證:直線過定點(diǎn)并求出點(diǎn)的坐標(biāo);

3)在(2)的條件下,過點(diǎn)的直線交橢圓兩點(diǎn),求的取值范圍.

【答案】1;(2)證明詳見解析,;(3.

【解析】

(1)根據(jù)題意列出關(guān)于的等式求解即可.

(2)先根據(jù)對稱性,直線過的定點(diǎn)一定在軸上,再設(shè)直線的方程為,聯(lián)立直線與橢圓的方程, 進(jìn)而求得的方程,并代入,化簡分析即可.

(3)先分析過點(diǎn)的直線斜率不存在時(shí)的值,再分析存在時(shí),設(shè)直線的方程為,聯(lián)立直線與橢圓的方程,得出韋達(dá)定理再代入求解出關(guān)于的解析式,再求解范圍即可.

解:設(shè)橢圓的標(biāo)準(zhǔn)方程焦距為,

由題意得,

,可得

,

所以橢圓的標(biāo)準(zhǔn)方程為;

證明:根據(jù)對稱性,直線過的定點(diǎn)一定在軸上,

由題意可知直線的斜率存在,

設(shè)直線的方程為,

聯(lián)立,消去得到,

設(shè)點(diǎn),

所以,

所以的方程為,

,

,代入上式并整理,

,

整理得,

所以,直線軸相交于定點(diǎn)

當(dāng)過點(diǎn)的直線的斜率不存在時(shí),直線的方程為,

此時(shí),

當(dāng)過點(diǎn)的直線斜率存在時(shí),

設(shè)直線的方程為,且在橢圓上,

聯(lián)立方程組,

消去,整理得,

所以

所以,

所以,

,

綜上可得,的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面是直角梯形,為側(cè)棱上一點(diǎn),已知.

(Ⅰ)證明:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)fx)的單調(diào)性;

2)若函數(shù)gx)=fx)﹣lnx2個(gè)不同的極值點(diǎn)x1,x2x1x2),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)判斷并說明函數(shù)的零點(diǎn)個(gè)數(shù).若函數(shù)所有零點(diǎn)均在區(qū)間內(nèi),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),判斷并說明函數(shù)的零點(diǎn)個(gè)數(shù).若函數(shù)所有零點(diǎn)均在區(qū)間內(nèi),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是拋物線的頂點(diǎn),,上的兩個(gè)動點(diǎn),且.

1)判斷點(diǎn)是否在直線上?說明理由;

2)設(shè)點(diǎn)是△的外接圓的圓心,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐的底面ABCD是邊長為2的正方形,且.若四棱錐P-ABCD的五個(gè)頂點(diǎn)在以4為半徑的同一球面上,當(dāng)PA最長時(shí),則______________;四棱錐P-ABCD的體積為______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為右頂點(diǎn)為過右焦點(diǎn)且垂直于軸的直線與橢圓相交于兩點(diǎn),所得四邊形為菱形,且其面積為.

1)求橢圓的方程;

2)過左焦點(diǎn)的直線與橢圓交于兩點(diǎn),試求三角形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周易》歷來被人們視作儒家群經(jīng)之首,它表現(xiàn)了古代中華民族對萬事萬物的深刻而又樸素的認(rèn)識,是中華人文文化的基礎(chǔ),它反映出中國古代的二進(jìn)制計(jì)數(shù)的思想方法.我們用近代術(shù)語解釋為:把陽爻“- ”當(dāng)作數(shù)字“1”,把陰爻“--”當(dāng)作數(shù)字“0”,則八卦所代表的數(shù)表示如下:

卦名

符號

表示的二進(jìn)制數(shù)

表示的十進(jìn)制數(shù)

000

0

001

1

010

2

011

3

依此類推,則六十四卦中的“屯”卦,符號“ ”表示的十進(jìn)制數(shù)是( )

A. 18B. 17C. 16D. 15

查看答案和解析>>

同步練習(xí)冊答案