【題目】在棱長為2的正方體中.
(1)求幾何體的表面積;
(2)若分別是棱的中點(diǎn),求證: 平面.
【答案】(1);(2)證明見解析.
【解析】試題分析:(1)先證明幾何體是每個面都是正三角形的四面體,再利用正三角形面積公式可得結(jié)果;(2)取的中點(diǎn),連,根據(jù)三角形中位線定理可證明四邊形為平行四邊形,從而可得,再根據(jù)線面平行的判定定理即可證明平面.
試題解析:(1)∵是棱長為2的正方體,
所以,故幾何體是每個面都是正三角形的四面體,三角形的面積是 ,所以幾何體的表面積是 .
(2)法一:證明:取的中點(diǎn),連,
∵, ,
∵, ,
∴, ,
∴四邊形為平行四邊形,
∴,
∵平面, 平面,
∴平面.
法二
證明:取B1C1的中點(diǎn)M,連接ME,MF,
在△D1B1C1中,MF分別是邊B1C1,D1C1的中點(diǎn),
∴MF∥D1B1,又平面DBB1D1,D1B1平面DBB1D1,
∴MF∥平面DBB1D1,
在正方形BCC1B1中,∵M(jìn)E是對邊B1C1,BC的中點(diǎn),∴BE∥B1M,BE=B1M,
∴四邊形BEMB1是平行四邊形,所以ME∥BB1,
又平面DBB1D1,BB1平面DBB1D1,
∴ME∥平面DBB1D1,又
所以平面MEF∥平面DBB1D1,且平面MEF
所以EF∥平面DBB1D1,
【方法點(diǎn)晴】本題主要考查線面平行的判定定理以及三棱錐的表面積,屬于難題. 證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(2)是就是利用方法①證明的.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(且)是奇函數(shù).
(1)求常數(shù)的值;
(2)若,試判斷函數(shù)的單調(diào)性,并加以證明;
(3)若,且函數(shù)在區(qū)間上的最小值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某火鍋店為了解氣溫對營業(yè)額的影響,隨機(jī)記錄了該店1月份中5天的日營業(yè)額y(單位:千元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如表:
x | 2 | 8 | 9 | 11 | 5 |
y | 12 | 8 | 8 | 7 | 10 |
(1)求y關(guān)于x的回歸方程 ;
(2)判定y與x之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6℃,用所求回歸方程預(yù)測該店當(dāng)日的營業(yè)額. (附:回歸方程 中, = = , = ﹣ .)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l經(jīng)過直線2x+y-5=0與x-2y=0的交點(diǎn)P.
(1)點(diǎn)A(5,0)到直線l的距離為3,求直線l的方程;
(2)求點(diǎn)A(5,0)到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在二項(xiàng)式( + )n展開式中,前三項(xiàng)的系數(shù)成等差數(shù)列. 求:(1)展開式中各項(xiàng)系數(shù)和;
【答案】解:由題意得2 × =1+ × ,
化為:n2﹣9n+8=0,解得n=1(舍去)或8.
∴n=8.
在 中,令x=1,可得展開式中各項(xiàng)系數(shù)和= = .
(1)展開式中系數(shù)最大的項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD-A1B1C1D1中,下列說法正確的是____ (填序號).
(1)直線AC1在平面CC1B1B內(nèi).
(2)設(shè)正方形ABCD與A1B1C1D1的中心分別為O、O1,則平面AA1C1C與平面BB1D1D的交線為OO1.
(3)由A、C1、B1確定的平面是ADC1B1.
(4)由A、C1、B1確定的平面與由A、C1、D確定的平面是同一個平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)復(fù)數(shù)z=2m+(4-m2)i,當(dāng)實(shí)數(shù)m取何值時,復(fù)數(shù)z對應(yīng)的點(diǎn):
(1)位于虛軸上?
(2)位于一、三象限?
(3)位于以原點(diǎn)為圓心,以4為半徑的圓上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中有20個大小相同的球,其中記上0號的有10個,記上n號的有n個(n=1,2,3,4),現(xiàn)從袋中任取一球,X表示所取球的標(biāo)號.
(1)求X的分布列,均值和方差;
(2)若Y=aX+b,E(Y)=1,D(Y)=11,試求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F為雙曲線 ﹣ =1(a>b>0)的右焦點(diǎn),過點(diǎn)F的直線分別交兩條漸近線于A,B兩點(diǎn),OA⊥AB,若2|AB|=|OA|+|OB|,則該雙曲線的離心率為( )
A.
B.2
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com