【題目】已知關(guān)于的不等式的解集為;
(1)若,求的取值范圍;
(2)若存在兩個(gè)不相等負(fù)實(shí)數(shù)、,使得,求實(shí)數(shù)的取值范圍;
(3)是否存在實(shí)數(shù),滿足:“對于任意,都有,對于任意的,都有”,若存在,求出的值,若不存在,說明理由.
【答案】(1);(2);(3)存在,
【解析】
(1)討論二次項(xiàng)系數(shù)和不等于0兩種情況,當(dāng)不等式的解集為時(shí),的取值范圍;(2)根據(jù)不等式的解集形式可知,求的范圍;(3)根據(jù)題意判斷不等式的解集,討論的情況,根據(jù)不等式的解集情況判斷是否存在.
(1)當(dāng)時(shí),或
當(dāng)時(shí),恒成立,
當(dāng)時(shí),不恒成立,舍去,
當(dāng)時(shí),
解得 或,
綜上可知或;
(2)根據(jù)不等式解集的形式可知或,
不等式解集的兩個(gè)端點(diǎn)就是對應(yīng)方程的實(shí)數(shù)根,
即有兩個(gè)不相等的負(fù)根,
即 ,解得 ,
綜上可知:;
(3)根據(jù)題意可知,得出解集,,
當(dāng)時(shí),解得或 ,
當(dāng)時(shí),恒成立,不滿足條件,
當(dāng)時(shí),不等式的解集是,滿足條件;
當(dāng)時(shí),此時(shí)一元二次不等式的解集形式不是的形式,不滿足條件;
當(dāng)時(shí),此時(shí)一元二次不等式的解集形式不是的形式,不滿足條件;
綜上,滿足條件的的值為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)a,b,c滿足a,b,c∈R+ .
(Ⅰ)若ab=1,證明:( + )2≥4;
(Ⅱ)若a+b+c=3,且 + + ≤|2x﹣1|﹣|x﹣2|+3恒成立,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國“一帶一路”戰(zhàn)略構(gòu)思提出后, 某科技企業(yè)為抓住“一帶一路”帶來的機(jī)遇, 決定開發(fā)生產(chǎn)一款大型電子設(shè)備, 生產(chǎn)這種設(shè)備的年固定成本為萬元, 每生產(chǎn)臺(tái),需另投入成本(萬元), 當(dāng)年產(chǎn)量不足臺(tái)時(shí), (萬元); 當(dāng)年產(chǎn)量不小于臺(tái)時(shí) (萬元), 若每臺(tái)設(shè)備售價(jià)為萬元, 通過市場分析,該企業(yè)生產(chǎn)的電子設(shè)備能全部售完.
(1)求年利潤 (萬元)關(guān)于年產(chǎn)量(臺(tái))的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少臺(tái)時(shí) ,該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長度單位,已知直線l的參數(shù)方程為 (t為參數(shù),0<φ<π),曲線C的極坐標(biāo)方程為ρcos2θ=8sinθ.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A、B兩點(diǎn),當(dāng)φ變化時(shí),求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知D= ,給出下列四個(gè)命題:
P1:(x,y)∈D,x+y+1≥0;
P2:(x,y)∈D,2x﹣y+2≤0;
P3:(x,y)∈D, ≤﹣4;
P4:(x,y)∈D,x2+y2≤2.
其中真命題的是( )
A.P1 , P2
B.P2 , P3
C.P2 , P4
D.P3 , P4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx+ax﹣ (a∈R)在x=2處的切線經(jīng)過點(diǎn)(﹣4,2ln2)
(1)討論函數(shù)f(x)的單調(diào)性
(2)若不等式 恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx+ax﹣ (a∈R)在x=2處的切線經(jīng)過點(diǎn)(﹣4,2ln2)
(1)討論函數(shù)f(x)的單調(diào)性
(2)若不等式 恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,點(diǎn)E,F分別在A1B1,D1C1上,A1E=D1F=4.過點(diǎn)E,F的平面與此長方體的面相交,交線圍成一個(gè)正方形。
(1)(I)在圖中畫出這個(gè)正方形(不必說明畫法與理由);
(2)(II)求平面 把該長方體分成的兩部分體積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·四川)一個(gè)正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.
(1)請按字母F , G , H標(biāo)記在正方體相應(yīng)地頂點(diǎn)處(不需要說明理由)
(2)判斷平面BEG與平面ACH的位置關(guān)系.并說明你的結(jié)論.
(3)證明:直線DF⊥平面BEG
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com