設(shè)橢圓的中心和拋物線的頂點(diǎn)均為原點(diǎn)、的焦點(diǎn)均在軸上,過(guò)的焦點(diǎn)F作直線,與交于A、B兩點(diǎn),在上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:


(1)求,的標(biāo)準(zhǔn)方程;
(2)若交于C、D兩點(diǎn),的左焦點(diǎn),求的最小值;
(3)點(diǎn)上的兩點(diǎn),且,求證:為定值;反之,當(dāng)為此定值時(shí),是否成立?請(qǐng)說(shuō)明理由.
(1)  ;(2);(3)證明見(jiàn)解析.

試題分析:(1)分析哪些點(diǎn)在橢圓上,哪些點(diǎn)在拋物線上,顯然是橢圓的頂點(diǎn),因此,從而點(diǎn)是橢圓上的點(diǎn),另兩點(diǎn)在拋物線上,代入它們的標(biāo)準(zhǔn)方程可求得其方程;(2)的頂點(diǎn)都是,底在同一直線上,因此基、其面積之比為底的比,即,這樣我們只要求出直線與已知兩曲線相交弦長(zhǎng)即可,直線與曲線交于兩點(diǎn),其弦長(zhǎng)為,當(dāng)然由于直線過(guò)圓錐曲線的焦點(diǎn),弦長(zhǎng)也可用焦半徑公式表示;(3)從題意可看出,只有把,求出來(lái),才能得出結(jié)論,為了求,,我們可設(shè)方程為,則方程為,這樣,都能用表示出來(lái),再計(jì)算可得其為定值,反之若,我們只能設(shè)方程為方程為,分別求出,代入此式,得出,如果一定能得到1,則就一定有,否則就不一定有.
試題解析:(1)在橢圓上,在拋物線上,
        (4分)
(2)(理) =.
是拋物線的焦點(diǎn),也是橢圓的右焦點(diǎn),①當(dāng)直線的斜率存在時(shí),
設(shè),,
聯(lián)立方程,得,時(shí)恒成立. 
(也可用焦半徑公式得:)     (5分)
聯(lián)立方程,得恒成立.
,   (6分)
=.          (8分)
②當(dāng)直線的斜率不存在時(shí),,
此時(shí),,=.          (9分)
所以,的最小值為.                    (10分)
(3)(理)證明:①若P、Q分別為長(zhǎng)軸和短軸的端點(diǎn),則=.(11分)
②若P、Q都不為長(zhǎng)軸和短軸的端點(diǎn),
設(shè)
聯(lián)立方程,解得;      (12分)
同理,聯(lián)立方程,解得
(13分)
反之,對(duì)于上的任意兩點(diǎn),當(dāng)時(shí),
設(shè),,易得
;
,
,亦即, (15分)
所以當(dāng)為定值時(shí),不成立           (16分)
“反之”的方法二:如果有,且不在坐標(biāo)軸上,作關(guān)于坐標(biāo)軸對(duì)稱(chēng)的射線與交于,,顯然,不可能同時(shí)成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的長(zhǎng)軸長(zhǎng)為,離心率為,分別為其左右焦點(diǎn).一動(dòng)圓過(guò)點(diǎn),且與直線相切.
(1)(ⅰ)求橢圓的方程;(ⅱ)求動(dòng)圓圓心軌跡的方程;
(2)在曲線上有四個(gè)不同的點(diǎn),滿足共線,共線,且,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓)的右焦點(diǎn)為,且橢圓過(guò)點(diǎn)
(1)求橢圓的方程;
(2)設(shè)斜率為的直線與橢圓交于不同兩點(diǎn),以線段為底邊作等腰三角形,其中頂點(diǎn)的坐標(biāo)為,求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓過(guò)點(diǎn),且離心率為.斜率為的直線與橢圓交于A、B兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為.
(1)求橢圓的方程;
(2)求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)點(diǎn)作傾斜角為的直線與曲線C交于不同的兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知圓E ,點(diǎn),P是圓E上任意一點(diǎn).線段PF的垂直平分線和半徑PE相交于Q.
(1)求動(dòng)點(diǎn)Q的軌跡的方程;
(2)點(diǎn),,點(diǎn)G是軌跡上的一個(gè)動(dòng)點(diǎn),直線AG與直線相交于點(diǎn)D,試判斷以線段BD為直徑的圓與直線GF的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓上任意一點(diǎn)P及點(diǎn),則的最大值為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)橢圓的離心率,右焦點(diǎn),方程的兩個(gè)根分別為,則點(diǎn)在(   )
A.圓
B.圓內(nèi)
C.圓
D.以上三種都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的右焦點(diǎn)為,橢圓軸正半軸交于點(diǎn),與軸正半軸交于,且,則橢圓的方程為(  )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案