已知橢圓的長軸長為,焦點是,點到直線的距離為,過點且傾斜角為銳角的直線與橢圓交于兩點,使得.
(1)求橢圓的方程;(2)求直線的方程.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩定點E(-2,0),F(2,0),動點P滿足,由點P向x軸作垂線段PQ,垂足為Q,點M滿足,點M的軌跡為C.
(1)求曲線C的方程
(2)過點D(0,-2)作直線與曲線C交于A、B兩點,點N滿足
(O為原點),求四邊形OANB面積的最大值,并求此時的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知坐標平面上點與兩個定點的距離之比等于5.
(1)求點的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中的軌跡為,過點的直線被所截得的線段的長為8,求直線的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的右頂點為A,右焦點為F,右準線與軸交于點B,且與一條漸近線交于點C,點O為坐標原點,,,過點F的直線與雙曲線右支交于點.
(Ⅰ)求此雙曲線的方程;
(Ⅱ)求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)點P是曲線C:上的動點,點P到點(0,1)的距離和它到
焦點F的距離之和的最小值為
(1)求曲線C的方程
(2)若點P的橫坐標為1,過P作斜率為的直線交C與另一點Q,交x軸于點M,
過點Q且與PQ垂直的直線與C交于另一點N,問是否存在實數(shù)k,使得直線MN與曲線C
相切?若存在,求出k的值,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標系xOy中,橢圓C1: ="1" (a>b>0)的左、右焦點分別為F1、F2, F2也是拋物線C2:y2=4x的焦點,點M為C1與C2在第一象限的交點,且|MF2|=.
(1)求C1的方程;
(2)直線l∥OM,與C1交于A、B兩點,若·=0,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分)已知橢圓的一個頂點為B,離心率,
直線l交橢圓于M、N兩點.
(Ⅰ)求橢圓的標準方程;
(II)如果ΔBMN的重心恰好為橢圓的右焦點F,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com