(本不題滿分14分)
已知在平面直角坐標系中,向量,△OFP的面積為,且 。
(1)設,求向量的夾角的取值范圍;
(2)設以原點O為中心,對稱軸在坐標軸上,以F為右焦點的橢圓經(jīng)過點M,且
取最小值時,求橢圓的方程。
解:(1)由

因為

(2)設
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的焦點為、,在長軸上任取一點,過作垂直于的直線交橢圓于,則使得點的橫坐標的取值范圍 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
設橢圓E:的上焦點是,過點P(3,4)和作直線P交橢圓于A、B兩點,已知A().
(1)求橢圓E的方程;
(2)設點C是橢圓E上到直線P距離最遠的點,求C點的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(本小題滿分12分)
已知橢圓的長軸長為,且點在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓右焦點的直線交橢圓于兩點,若以為直徑的圓過原點,
求直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)已知橢圓經(jīng)過點,為坐標原點,平行于的直線軸上的截距為.
(1)當時,判斷直線與橢圓的位置關系(寫出結論,不需證明);
(2)當時,為橢圓上的動點,求點到直線   距離的最小值;
(3)如圖,當交橢圓于兩個不同點時,求證:直線、軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓E的長軸的一個端點是拋物線的焦點,離心率是
(1)求橢圓E的方程;
(2)過點C(—1,0),斜率為k的動直線與橢圓E相交于A、B兩點,請問x軸上是否存在點M,使為常數(shù)?若存在,求出點M的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分18分,第(1)題4分、第(2)題8分、第(3)題6分)
已知二次曲線的方程:
(1)分別求出方程表示橢圓和雙曲線的條件;
(2)對于點,是否存在曲線交直線、兩點,使得?若存在,求出的值;若不存在,說明理由;
(3)已知與直線有公共點,求其中實軸最長的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

分別為橢圓的焦點,點在橢圓上,若;則點的坐標是 _________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
⑴求橢圓C的方程;
⑵設,是橢圓上的點,連結交橢圓于另一點,求直線的斜率的取值范圍.

查看答案和解析>>

同步練習冊答案