已知某皮鞋廠(chǎng)一天的生產(chǎn)成本C(元)與生產(chǎn)數(shù)量n(雙)之間的函數(shù)關(guān)系是C=4000+50n.
(1)求一天生產(chǎn)1000雙皮鞋的成本;
(2)如果某天的生產(chǎn)成本是48000元,那么這一天生產(chǎn)了多少雙皮鞋?
(3)若每雙皮鞋的售價(jià)為90元,且生產(chǎn)的皮鞋全部售出,試寫(xiě)出這一天的利潤(rùn)P關(guān)于這一天生產(chǎn)數(shù)量n的函數(shù)關(guān)系式,并求出每天至少生產(chǎn)多少雙皮鞋,才能不虧本?
分析:(1)令n=1000,根據(jù)生產(chǎn)成本C(元)與生產(chǎn)數(shù)量n(雙)之間的函數(shù)關(guān)系是C=4000+50n,即可求解;
(2)令C=48000,生產(chǎn)成本C(元)與生產(chǎn)數(shù)量n(雙)之間的函數(shù)關(guān)系是C=4000+50n,即可求解;
(3)根據(jù)題意建立p(n)的關(guān)系,然后根據(jù)要不虧本,必須p(n)≥0,求出n的范圍即可.
解答:解:(1)∵生產(chǎn)成本C(元)與生產(chǎn)數(shù)量n(雙)之間的函數(shù)關(guān)系是C=4000+50n
∴n=1000時(shí),C=4000+50000=54000;
(2)令C=4000+50n=48000,解得n=880;
(3)由題意得:
∵某皮鞋廠(chǎng)一天的生產(chǎn)成本C(元)與生產(chǎn)數(shù)量n(雙)之間的函數(shù)關(guān)系是C=4000+50n
∴p(n)=90n-(4000+50n)=40n-4000(n∈N+
要不虧本,必須p(n)≥0,
解得n≥100.
即每天至少生產(chǎn)100雙皮鞋,才能不虧本.
點(diǎn)評(píng):本題考查函數(shù)解析式的運(yùn)用,考查函數(shù)模型的選擇與應(yīng)用,通過(guò)題意建立函數(shù),然后求出參數(shù)的范圍是關(guān)鍵.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、已知某皮鞋廠(chǎng)一天的生產(chǎn)成本C(元)與生產(chǎn)數(shù)量n(雙)之間的函數(shù)關(guān)系是C=4000+50n.
若每雙皮鞋的售價(jià)為90元,且生產(chǎn)的皮鞋全部售出.試寫(xiě)出這一天的利潤(rùn)P關(guān)于這一天的生產(chǎn)數(shù)量n的函數(shù)關(guān)系式,并求出每天至少生產(chǎn)多少雙皮鞋,才能不虧本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某皮鞋廠(chǎng)一天的生產(chǎn)成本C(元)與生產(chǎn)數(shù)量n(雙)之間的函數(shù)關(guān)系是C=4000+50n.
(1)如果某天的生產(chǎn)成本是36000元,問(wèn)這一天生產(chǎn)了多少雙皮鞋?
(2)若每雙皮鞋的售價(jià)是90元,且生產(chǎn)的皮鞋全部售出,試寫(xiě)出這一天的利潤(rùn)P關(guān)于這一天生產(chǎn)數(shù)量n的函數(shù)表達(dá)式,并求出每天至少生產(chǎn)多少雙皮鞋,才能保證每天的利潤(rùn)不低于8500元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省揚(yáng)州市高一(上)數(shù)學(xué)試卷(解析版) 題型:解答題

已知某皮鞋廠(chǎng)一天的生產(chǎn)成本C(元)與生產(chǎn)數(shù)量n(雙)之間的函數(shù)關(guān)系是C=4000+50n.
(1)求一天生產(chǎn)1000雙皮鞋的成本;
(2)如果某天的生產(chǎn)成本是48000元,那么這一天生產(chǎn)了多少雙皮鞋?
(3)若每雙皮鞋的售價(jià)為90元,且生產(chǎn)的皮鞋全部售出,試寫(xiě)出這一天的利潤(rùn)P關(guān)于這一天生產(chǎn)數(shù)量n的函數(shù)關(guān)系式,并求出每天至少生產(chǎn)多少雙皮鞋,才能不虧本?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省南通市通州區(qū)三星級(jí)高中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知某皮鞋廠(chǎng)一天的生產(chǎn)成本C(元)與生產(chǎn)數(shù)量n(雙)之間的函數(shù)關(guān)系是C=4000+50n.
(1)如果某天的生產(chǎn)成本是36000元,問(wèn)這一天生產(chǎn)了多少雙皮鞋?
(2)若每雙皮鞋的售價(jià)是90元,且生產(chǎn)的皮鞋全部售出,試寫(xiě)出這一天的利潤(rùn)P關(guān)于這一天生產(chǎn)數(shù)量n的函數(shù)表達(dá)式,并求出每天至少生產(chǎn)多少雙皮鞋,才能保證每天的利潤(rùn)不低于8500元?

查看答案和解析>>

同步練習(xí)冊(cè)答案