甲乙兩隊參加知識競賽,每隊人,每人回答一個問題,答對者為本隊贏得一分,答錯得零分。假設甲隊中每人答對的概率均為,乙隊中人答對的概率分別為且各人正確與否相互之間沒有影響.用表示甲隊的總得分.
(Ⅰ)求隨機變量分布列  
(Ⅱ)用表示“甲、乙兩個隊總得分之和等于”這一事件,用表示“甲隊總得分大于乙隊總得分”這一事件,求。

(1)根據(jù)題意,由于甲隊中每人答對的概率均為,且各人正確與否相互之間沒有影響,那么用表示甲隊的總得分,則可知x的可能取值為0,1,2,3,


0
1
2
3
   P
 

 
 
根據(jù)期望公式得到
(2)

解析試題分析:(1)


0
1
2
3
   P
 

 
 

(2)根據(jù)題意,由于用表示“甲、乙兩個隊總得分之和等于”這一事件,用表示“甲隊總得分大于乙隊總得分”這一事件, ,則可以有
考點:古典概型概率
點評:主要是考查了古典概型概率的計算 ,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在甲、乙兩個盒子中分別裝有標號為1、2、3、4的四個球,現(xiàn)從甲、乙兩個盒子中各取出1個球,每個小球被取出的可能性相等.
(1)求取出的兩個球上標號為相鄰整數(shù)的概率;
(2)求取出的兩個球上標號之和能被3整除的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲乙丙三人商量周末去玩,甲提議去市中心逛街,乙提議去城郊覓秋,丙表示隨意。最終,商定以拋硬幣的方式?jīng)Q定結(jié)果。規(guī)則是:由丙拋擲硬幣若干次,若正面朝上則甲得一分乙得零分,反面朝上則乙得一分甲得零分,先得4分者獲勝,三人均執(zhí)行勝者的提議.記所需拋幣次數(shù)為.
⑴求=6的概率;
⑵求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

先后隨機投擲2枚正方體骰子,其中表示第枚骰子出現(xiàn)的點數(shù),表示第枚骰子出現(xiàn)的點數(shù). 
(Ⅰ)求點在直線上的概率;  
(Ⅱ)求點滿足的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

將背面相同正面分別標有1、2、3、4的四張卡片洗勻后背面朝上放在桌面上,(1)從中隨機的抽取一張卡片,求該卡片正面上的數(shù)字是偶數(shù)的概率(2)先從中隨機的抽取一張卡片(不放回),將該卡片正面上的數(shù)字作為十位數(shù)字,再隨機的抽取一張卡片,將該卡片正面上的數(shù)字作為個位數(shù)字,則組成的兩位數(shù)恰好是4的倍數(shù)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

每一個父母都希望自己的孩子能升上比較理想的中學,于是就催生了“擇校熱”,這樣“擇!钡慕Y(jié)果就導致了學生在路上耽誤的時間增加了.若某生由于種種原因,每天只能6:15騎車從家出發(fā)到學校,途經(jīng)5個路口,這5個路口將家到學校分成了6個路段,每個路段的騎車時間是10分鐘(通過路口的時間忽略不計),假定他在每個路口遇見紅燈的概率均為,且該生只在遇到紅燈或到達學校才停車.對每個路口遇見紅燈的情況統(tǒng)計如下:

紅燈
1
2
3
4
5
等待時間(秒)
60
60
90
30
90
(1)設學校規(guī)定7:20后(含7:20)到校即為遲到,求這名學生遲到的概率;
(2)設表示該學生第一次停車時已經(jīng)通過的路口數(shù),求它的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

下圖是某游戲中使用的材質(zhì)均勻的圓形轉(zhuǎn)盤,其中Ⅰ,Ⅱ,Ⅲ,Ⅳ部分的面積各占轉(zhuǎn)盤面積的,,.游戲規(guī)則如下:

① 當指針指到Ⅰ,Ⅱ, Ⅲ,Ⅳ部分時,分別獲得積分100分,40分,10分,0分;
② (。┤魠⒓釉撚螒蜣D(zhuǎn)一次轉(zhuǎn)盤獲得的積分不是40分,則按①獲得相應的積分,游戲結(jié)束;
(ⅱ)若參加該游戲轉(zhuǎn)一次獲得的積分是40分,則用拋一枚質(zhì)地均勻的硬幣的方法來決定是否繼續(xù)游戲.正面向上時,游戲結(jié)束;反面向上時,再轉(zhuǎn)一次轉(zhuǎn)盤,若再轉(zhuǎn)一次的積分不高于40分,則最終積分為0分,否則最終積分為100分,游戲結(jié)束.
設某人參加該游戲一次所獲積分為
(1)求的概率;
(2)求的概率分布及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某高校數(shù)學系計劃在周六和周日各舉行一次主題不同的心理測試活動,分別由李老師和張老師負責,已知該系共有位學生,每次活動均需該系位學生參加(都是固定的正整數(shù)).假設李老師和張老師分別將各自活動通知的信息獨立、隨機地發(fā)給該系位學生,且所發(fā)信息都能收到.記該系收到李老師或張老師所發(fā)活動通知信息的學生人數(shù)為
(Ⅰ)求該系學生甲收到李老師或張老師所發(fā)活動通知信息的概率;
(Ⅱ)求使取得最大值的整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知連續(xù)型隨機變量的概率密度函數(shù)

(1)    求常數(shù)的值,并畫出的概率密度曲線;

(2)求

查看答案和解析>>

同步練習冊答案