已知函數(shù)f(x)定義域是[-1,1],則函數(shù)f(log0.5x)的定義域是
 
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)成立的條件,即可得到結(jié)論.
解答: 解:∵函數(shù)f(x)定義域是[-1,1],
∴由-1≤log0.5x≤1,
解得
1
2
≤x≤2,
故函數(shù)的定義域?yàn)閇
1
2
,2],
故答案為:[
1
2
,2]
點(diǎn)評(píng):本題主要考查函數(shù)的定義域的求解,要求熟練掌握常見函數(shù)成立的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈R,若(x+y-3)+(x-4)i=0,則x-y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=-
b
x
在(0,+∞)上是減函數(shù),則b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=2x2-1,則f(x-1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

問題“求不等式3x+4x≤5x的解”有如下的思路:不等式3x+4x≤5x可變?yōu)椋?span id="9vnnz9d" class="MathJye">
3
5
x+(
4
5
x≤1,考查函數(shù)f(x)=(
3
5
x+(
4
5
x可知,函數(shù)f(x)在R上單調(diào)遞減,且f(2)=1,∴原不等式的解是x≥2.依照此解法可得到不等式:x3-(2x+3)>(2x+3)3-x的解是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
2-1
-43
,B=
4-1
-31
,滿足AX=B的二階矩陣X=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sinα=2cosα,則tan(π-α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為4,且與橢圓x2+
y2
2
=1有相同的離心率,斜率為k的直線l經(jīng)過點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,定義點(diǎn)P(x1,y1),Q(x2,y2)之間的“直角距離”為d(P,Q)=|x1-x2|+|y1-y2|,若點(diǎn)C(x,y)到點(diǎn)A(1,3),B(6,9)的“直角距離”相等,其中實(shí)數(shù)x、y滿足0≤x≤7,3≤y≤9,則所有滿足條件的點(diǎn)C的軌跡的長(zhǎng)度之和為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案