已知命題p:函數(shù)f(x)=
x
x-1
的圖象的對(duì)稱(chēng)中心坐標(biāo)為(1,1);命題q:若函數(shù)g(x)在區(qū)間[a,b]上是增函數(shù),則有g(shù)(a)(b-a)<
b
a
g(x)dx<g(b)(b-a)成立.下列命題為真命題的是( 。
A、p∧qB、¬p∧q
C、p∧¬qD、¬p∧¬q
考點(diǎn):復(fù)合命題的真假
專(zhuān)題:集合
分析:變形即可判斷命題p的真假,利用定積分的性質(zhì)即可判斷出q的真假,再利用“或”“且”“非”命題的真假即可判斷出.
解答: 解:對(duì)于命題p:函數(shù)f(x)=
x
x-1
=
x-1+1
x-1
=1+
1
x-1
,因此f(x)的圖象的對(duì)稱(chēng)中心坐標(biāo)為(1,1),是真命題;
對(duì)于命題q:若函數(shù)g(x)在區(qū)間[a,b]上是增函數(shù),若a<x<b,則g(a)<g(x)<g(b),∴
b
a
g(a)da<
b
a
g(x)dx<
b
a
g(b)dx
,
∴g(a)(b-a)<
b
a
g(x)dx<g(b)(b-a),因此成立,即是真命題.
由以上可得:p∧q是真命題.
故選:A.
點(diǎn)評(píng):本題考查了反比例函數(shù)的對(duì)稱(chēng)性、定積分的性質(zhì)、“或”“且”“非”命題的真假判斷,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=|x-1|+|x+m|(m∈R),g(x)=2x-1,若m>-1,x∈[-m,1],不等式f(x)<g(x)恒成立,則實(shí)數(shù)m的取值范圍是( 。
A、(-1,-
2
3
]
B、(-1,-
2
3
C、(-∞,-
2
3
]
D、(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=
i
2
+2i
(i為虛數(shù)單位),則z的共軛復(fù)數(shù)為( 。
A、
1
3
+
2
6
i
B、
1
3
-
2
6
i
C、-1-
2
2
i
D、-1+
2
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線(xiàn)3x+(a+1)y-1=0與直線(xiàn)ax-2y+1=0互相垂直,則(-
1
x
+ax25展開(kāi)式中x的系數(shù)為( 。
A、40B、-10
C、10D、-40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P在邊長(zhǎng)為1的正方形ABCD內(nèi)部運(yùn)動(dòng),則點(diǎn)P到此正方形中心點(diǎn)的距離均不超過(guò)
1
2
的概率為( 。
A、
1
2
B、
1
4
C、
π
4
D、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列幾個(gè)式子化簡(jiǎn)后的結(jié)果是純虛數(shù)的是( 。
A、
1-i
i
B、(1+i)3
C、i4
D、
1-i
1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠安排甲、乙兩種產(chǎn)品的生產(chǎn),已知工廠生產(chǎn)每噸甲、乙兩種產(chǎn)品所需要的原材料A、B、C的數(shù)量和一周內(nèi)可用資源數(shù)量如下表所示:
原材料 甲(噸) 乙(噸) 資源數(shù)量(噸)
A 1 1 50
B 4 0 160
C 2 5 200
如果甲產(chǎn)品每噸的利潤(rùn)為300元,乙產(chǎn)品每噸的利潤(rùn)為200元,此處不考慮市場(chǎng)的有限性,則工廠每周要獲得最大利潤(rùn),最科學(xué)的安排生產(chǎn)方式是( 。
A、每周生產(chǎn)甲產(chǎn)品40噸,不生產(chǎn)乙產(chǎn)品
B、每周不生產(chǎn)甲產(chǎn)品,生產(chǎn)乙產(chǎn)品40噸
C、每周生產(chǎn)甲產(chǎn)品
50
3
噸,生產(chǎn)乙產(chǎn)品
100
3
D、每周生產(chǎn)甲產(chǎn)品40噸,生產(chǎn)乙產(chǎn)品10噸

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=(cosx)2+asinx+3a-2(x∈[0,
π
2
])的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-
1
2
ax2+bx(a>0),f′(1)=0.
(Ⅰ)試用含a的式子表示b,并求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)在(
1
2
,+∞)上有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案