已知函數(shù)
(Ⅰ)若是從三個(gè)數(shù)中任取的一個(gè)數(shù),是從四個(gè)數(shù)中任取的一個(gè)數(shù),求為偶函數(shù)的概率;
(Ⅱ)若,是從區(qū)間任取的一個(gè)數(shù),求方程有實(shí)根的概率.

(1)
(2)

解析試題分析:解(1)記A=為偶函數(shù)
有3種取法,有4種取法,所以共有個(gè)基本事件       3分
為偶函數(shù),則,所以時(shí)件A中共有4個(gè)基本事件    
所以                                   6分
(2)                          8分
有實(shí)根,則
,得                        10分
設(shè)B=有實(shí)根 又
故由幾何概型有                       12分
考點(diǎn):古典概型
點(diǎn)評(píng):主要考查了古典概型的基本運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲,乙,丙三位學(xué)生獨(dú)立地解同一道題,甲做對(duì)的概率為,乙,丙做對(duì)的概率分別為 (),且三位學(xué)生是否做對(duì)相互獨(dú)立.記為這三位學(xué)生中做對(duì)該題的人數(shù),其分布列為:


0
1
2
3





(Ⅰ)求至少有一位學(xué)生做對(duì)該題的概率;
(Ⅱ)求,的值;
(Ⅲ)求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知正方形的邊長(zhǎng)為2,分別是邊的中點(diǎn).
(1)在正方形內(nèi)部隨機(jī)取一點(diǎn),求滿(mǎn)足的概率;
(2)從這八個(gè)點(diǎn)中,隨機(jī)選取兩個(gè)點(diǎn),記這兩個(gè)點(diǎn)之間的距離為,求隨機(jī)變量的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個(gè)整數(shù)中等可能隨機(jī)產(chǎn)生.
(Ⅰ)分別求出按程序框圖正確編程運(yùn)行時(shí)輸出y的值為i的概率Pi(i=1,2,3);
(Ⅱ)甲、乙兩同學(xué)依據(jù)自己對(duì)程序框圖的理解,各自編寫(xiě)程序重復(fù)運(yùn)行n次后,統(tǒng)計(jì)記錄了輸出y的值為i(i=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計(jì)表的部分?jǐn)?shù)據(jù).
甲的頻數(shù)統(tǒng)計(jì)表(部分)                 

運(yùn)行
次數(shù)n
輸出y的值
為1的頻數(shù)
輸出y的值
為2的頻數(shù)
輸出y的值
為3的頻數(shù)
30
14
6
10




2100
1027
376
697
乙的頻數(shù)統(tǒng)計(jì)表(部分)
運(yùn)行
次數(shù)n
輸出y的值
為1的頻數(shù)
輸出y的值
為2的頻數(shù)
輸出y的值
為3的頻數(shù)
30
12
11
7




2100
1051
696
353
當(dāng)n=2100時(shí),根據(jù)表中的數(shù)據(jù),分別寫(xiě)出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷兩位同學(xué)中哪一位所編寫(xiě)程序符合算法要求的可能性較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
一個(gè)不透明的袋子中裝有4個(gè)形狀相同的小球,分別標(biāo)有不同的數(shù)字2,3,4,,現(xiàn)從袋中隨機(jī)摸出2個(gè)球,并計(jì)算摸出的這2個(gè)球上的數(shù)字之和,記錄后將小球放回袋中攪勻,進(jìn)行重復(fù)試驗(yàn)。記A事件為“數(shù)字之和為7”.試驗(yàn)數(shù)據(jù)如下表

摸球總次數(shù)
10
20
30
60
90
120
180
240
330
450
“和為7”出現(xiàn)的頻數(shù)
1
9
14
24
26
37
58
82
109
150
“和為7”出現(xiàn)的頻率
0.10
0.45
0.47
0.40
0.29
0.31
0.32
0.34
0.33
0.33
(參考數(shù)據(jù):
(Ⅰ)如果試驗(yàn)繼續(xù)下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“數(shù)字之和為7”的頻率將穩(wěn)定在它的概率附近。試估計(jì)“出現(xiàn)數(shù)字之和為7”的概率,并求的值;
(Ⅱ)在(Ⅰ)的條件下,設(shè)定一種游戲規(guī)則:每次摸2球,若數(shù)字和為7,則可獲得獎(jiǎng)金7元,否則需交5元。某人摸球3次,設(shè)其獲利金額為隨機(jī)變量元,求的數(shù)學(xué)期望和方差。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

根據(jù)以往資料統(tǒng)計(jì),大學(xué)生購(gòu)買(mǎi)某品牌平板電腦時(shí)計(jì)劃采用分期付款的期數(shù)ζ的分布列為

ζ
1
2
3
P
0.4
0.25
0.35
(1)若事件A={購(gòu)買(mǎi)該平板電腦的3位大學(xué)生中,至少有1位采用1期付款},求事件A的概率P(A);
(2)若簽訂協(xié)議后,在實(shí)際付款中,采用1期付款的沒(méi)有變化,采用2、3期付款的都至多有一次改付款期數(shù)的機(jī)會(huì),其中采用2期付款的只能改為3期,概率為;采用3期付款的只能改為2期,概率為.數(shù)碼城銷(xiāo)售一臺(tái)該平板電腦,實(shí)際付款期數(shù)與利潤(rùn)(元)的關(guān)系為

1
2
3
η
200
250
300
(3)求的分布列及期望E().

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

百貨大樓在五一節(jié)舉行抽獎(jiǎng)活動(dòng),規(guī)則是:從裝有編為、、、四個(gè)小球的抽獎(jiǎng)箱中同時(shí)抽出兩個(gè)小球,兩個(gè)小球號(hào)碼相加之和等于中一等獎(jiǎng),等于中二等獎(jiǎng),等于中三等獎(jiǎng)。
(1)求中三等獎(jiǎng)的概率;
(2)求中獎(jiǎng)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某單位實(shí)行休年假制度三年來(lái),名職工休年假的次數(shù)進(jìn)行的調(diào)查統(tǒng)計(jì)結(jié)果如下表所示:

休假次數(shù)




人數(shù)




根據(jù)上表信息解答以下問(wèn)題:
⑴從該單位任選兩名職工,用表示這兩人休年假次數(shù)之和,記“函數(shù),在區(qū)間,上有且只有一個(gè)零點(diǎn)”為事件,求事件發(fā)生的概率;
⑵從該單位任選兩名職工,用表示這兩人休年假次數(shù)之差的絕對(duì)值,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中國(guó)航母“遼寧艦”是中國(guó)第一艘航母,“遼寧”號(hào)以4臺(tái)蒸汽輪機(jī)為動(dòng)力,為保證航母的動(dòng)力安全性,科學(xué)家對(duì)蒸汽輪機(jī)進(jìn)行了170余項(xiàng)技術(shù)改進(jìn),增加了某項(xiàng)新技術(shù),該項(xiàng)新技術(shù)要進(jìn)入試用階段前必須對(duì)其中的三項(xiàng)不同指標(biāo)甲、乙、丙進(jìn)行通過(guò)量化檢測(cè).假如該項(xiàng)新技術(shù)的指標(biāo)甲、乙、丙獨(dú)立通過(guò)檢測(cè)合格的概率分別為、.指標(biāo)甲、乙、丙合格分別記為4分、2分、4分;若某項(xiàng)指標(biāo)不合格,則該項(xiàng)指標(biāo)記0分,各項(xiàng)指標(biāo)檢測(cè)結(jié)果互不影響.
(I)求該項(xiàng)技術(shù)量化得分不低于8分的概率;
(II)記該項(xiàng)新技術(shù)的三個(gè)指標(biāo)中被檢測(cè)合格的指標(biāo)個(gè)數(shù)為隨機(jī)變量X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案