【題目】已知f(x)為二次函數(shù),且

(1)求f(x)的表達式;

(2)判斷函數(shù)在(0,+∞)上的單調(diào)性,并證明.

【答案】(1);(2)增函數(shù),證明見解析.

【解析】

(1)利用題中所給的條件,先設(shè)出函數(shù)的解析式,利用將式子化為恒等式,利用對應項系數(shù)相等,得到方程組,求得結(jié)果;

(2)先化簡函數(shù)解析式,利用單調(diào)性的定義,證明得到函數(shù)的單調(diào)性,得到結(jié)果.

(1)設(shè)f(x)=ax2+bx+c(a≠0),

由條件得:a(x+1)2+b(x+1)+c+a(x﹣1)2+b(x﹣1)+c=2x2﹣4x,

從而, 解得:,

所以f(x)=x2﹣2x﹣1;

(2)函數(shù)g(x)=在(0,+∞)上單調(diào)遞增.

理由如下:g(x)==,

設(shè)設(shè)任意x1,x2(0,+∞),且x1<x2

g(x1)﹣g(x2)=﹣()=(x1﹣x2)(1+),

x1,x2(0,+∞),且x1<x2

x1﹣x2<0,1+>0,

g(x1)﹣g(x2)<0,即g(x1)<g(x2),

所以函數(shù)g(x)=在(0,+∞)上單調(diào)遞增

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的一條切線,切點為B,直線ADE、CFD、CGE都是⊙O的割線,已知AC=AB.

(1)若CG=1,CD=4.求 的值.
(2)求證:FG∥AC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某機構(gòu)在某一學校隨機抽取30名學生參加環(huán)保知識測試,測試成績(單位:分)如圖所示,假設(shè)得分值的中位數(shù)為me , 眾數(shù)為m0 , 平均值為 ,則(

A.me=m0=
B.me=m0
C.me<m0
D.m0<me

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】12分)已知函數(shù)fx=

1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(12分)已知函數(shù)f(x)對任意的實數(shù)mn都有:f(mn)=f(m)+f(n)-1,

且當x>0時,有f(x)>1.

(1)求f(0).

(2)求證:f(x)在R上為增函數(shù).

(3)若f(1)=2,且關(guān)于x的不等式f(ax-2)+f(xx2)<3對任意的x∈[1,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家庭進行理財投資,根據(jù)長期收益率市場預測投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比已知投資1萬元時兩類產(chǎn)品的收益分別為0125萬元和05萬元

1分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;

2該家庭有20萬元資金全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)= ,g(x)=ax3﹣x2﹣x+b(a,b∈R,a≠0),g(x)的圖象C在x=﹣ 處的切線方程是y=
(1)若求a,b的值,并證明:當x∈(﹣∞,2]時,g(x)的圖象C上任意一點都在切線y= 上或在其下方;
(2)求證:當x∈(﹣∞,2]時,f(x)≥g(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=f(x)在上是增函數(shù),函數(shù)y=f(x+2)是偶函數(shù),則( )

A. f(1)<f(2.5)<f(3.5) B. f(3.5)<f(1)<f(2.5)

C. f(3.5)<f(2.5)<f(1) D. f(2.5)<f(1)<f(3.5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是( )

A. 至少有一個白球;至少有一個紅球 B. 至少有一個白球;紅、黑球各一個

C. 恰有一個白球;一個白球一個黑球 D. 至少有一個白球;都是白球

查看答案和解析>>

同步練習冊答案