在數(shù)列{an}和等比數(shù)列{bn}中,a1=0,a3=2,bn=2an+1(n∈N*).
(1)求數(shù)列{bn}及{an}的通項公式;
(2)若cn=an·bn,求數(shù)列{cn}的前n項和Sn.

(1)an=n-1(2)Sn=4+(n-2)·2n+1

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

為數(shù)列的前項和,對任意的,都有為常數(shù),且.
(1)求證:數(shù)列是等比數(shù)列;
(2)設數(shù)列的公比,數(shù)列滿足,,求數(shù)列的通項公式;
(3)在滿足(2)的條件下,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)已知兩個等比數(shù)列{an},{bn},滿足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若數(shù)列{an}唯一,求a的值;
(2)是否存在兩個等比數(shù)列{an},{bn},使得b1-a1,b2-a2,b3-a3,b4-a4成公差不為0的等差數(shù)列?若存在,求{an},{bn}的通項公式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

等差數(shù)列{an}的首項為a1,公差d=-1,前n項和為Sn.
(1)若S5=-5,求a1的值.
(2)若Sn≤an對任意正整數(shù)n均成立,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列(常數(shù)),其前項和為 
(1)求數(shù)列的首項,并判斷是否為等差數(shù)列,若是求其通項公式,不是,說明理由;
(2)令的前n項和,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)f(x)=(x>0),數(shù)列{an}滿足a1=1,anf (n∈N*,且n≥2).
(1)求數(shù)列{an}的通項公式;
(2)設Tna1a2a2a3a3a4a4a5+…+(-1)n-1·anan+1,若Tntn2n∈N*恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列的前項和為.
(1)請寫出數(shù)列的前項和公式,并推導其公式;
(2)若,數(shù)列的前項和為,求的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在公差為d的等差數(shù)列{an}中,已知
a1=10,且a1,2a2+2,5a3成等比數(shù)列.
(1)求dan;
(2)若d<0,求|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知集合,對于數(shù)列.
(Ⅰ)若三項數(shù)列滿足,則這樣的數(shù)列有多少個?
(Ⅱ)若各項非零數(shù)列和新數(shù)列滿足首項,),且末項,記數(shù)列的前項和為,求的最大值.

查看答案和解析>>

同步練習冊答案