函數(shù)f(x)=
1
4
x4-
1
3
x3+x2-2在R上的極值點有( 。
A、3個B、2個C、1個D、0個
考點:利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求f′(x),根據(jù)極值的定義,判斷f′(x)的符號即可找到函數(shù)f(x)的極值,從而確定f(x)極值的個數(shù).
解答: 解:f′(x)=x3-x2+2x=x(x2-x+2),∵x2-x+2>0,
∴x∈(-∞,0)時,f′(x)<0;x∈(0,+∞)時,f′(x)>0;
∴x=0是函數(shù)f(x)的極小值點.
故選:C.
點評:考查極值的定義,找極值點的時候,一般先求方程f′(x)=0的實數(shù)根,然后劃分幾個區(qū)間,并判斷函數(shù)在各個區(qū)間上的導(dǎo)數(shù)符號.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖是計算
1
1×2
+
1
2×3
+…+
1
9×10
的值的程序框圖,其中在判斷框中應(yīng)填入的條件是:i<
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正四棱錐P-ABCD中,PA=2,直線PA與平面ABCD所成角為60°,E為PC的中點,則異面直線PA與BE所成角為( 。
A、90°B、60°
C、45°D、30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在函數(shù)f(x)=ax+
2
x
在x=1處有極值,則a的值為( 。
A、-1B、-2C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式組
x2-x-2>0
2x2+(5+2k)x+5k<0
的解集中所含整數(shù)解只有-2,求k的取值范圍( 。
A、[-3,2)
B、[-1,2)
C、[0,2)
D、[1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,設(shè)
AB
=
a
AC
=
b
,AP的中點為Q,BQ的中點為R,CR的中點為P,若
AP
=m
a
+n
b
,則m+n=( 。
A、
6
7
B、1
C、
8
7
D、
10
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<2π)圖象上的一個最高點是(2,
2
),由這個最高點到相鄰的最低點圖象與x軸的交點為(6,0),則f(x)=( 。
A、
2
sin(
π
4
x+
π
4
B、
2
sin(
π
4
x-
π
8
C、
2
sin(
π
8
x+
π
4
D、
2
sin(
π
8
x-
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)在[0,+∞)內(nèi)為增函數(shù)的是( 。
A、y=x2-x
B、y=-
1
x
C、y=lnx
D、y=ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且a2=b2+c2+bc.
(1)求A的大。
(2)求sinB+sinC的最大值.

查看答案和解析>>

同步練習(xí)冊答案