(2013•肇慶二模)已知變量x,y滿(mǎn)足約束條件
y≤3
x+y≥1
x-y≤1
,則z=2x-y的最優(yōu)解是(  )
分析:作出題中不等式組表示的平面區(qū)域,得如圖的△ABC及其內(nèi)部,再將目標(biāo)函數(shù)z=2x-y對(duì)應(yīng)的直線(xiàn)進(jìn)行平移,可得當(dāng)x=-2且y=3時(shí),z達(dá)到取得最小值-7;當(dāng)x=4且y=3時(shí),z達(dá)到取得最大值5.由此可得本題的答案.
解答:解:作出不等式組
y≤3
x+y≥1
x-y≤1
表示的平面區(qū)域,
得到如圖的△ABC及其內(nèi)部,其中A(-2,3),B(4,3),C(1,0)
設(shè)z=F(x,y)=2x-y,將直線(xiàn)l:z=2x-y進(jìn)行平移,
當(dāng)l經(jīng)過(guò)點(diǎn)B時(shí),目標(biāo)函數(shù)z達(dá)到最大值,可得z最大值=F(4,3)=5
當(dāng)l經(jīng)過(guò)點(diǎn)A時(shí),目標(biāo)函數(shù)z達(dá)到最小值,可得z最小值=F(-2,3)=-7
因此,z=2x-y的最優(yōu)解是(4,3)或(-2,3)
故選:C
點(diǎn)評(píng):本題給出二元一次不等式組,求目標(biāo)函數(shù)z=2x-y取得最大值或最小值時(shí)相應(yīng)的x、y的值,著重考查了二元一次不等式組表示的平面區(qū)域和簡(jiǎn)單的線(xiàn)性規(guī)劃等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶二模)(坐標(biāo)系與參數(shù)方程選做題)
若以直角坐標(biāo)系的x軸的非負(fù)半軸為極軸,曲線(xiàn)l1的極坐標(biāo)系方程為ρsin(θ-
π
4
)=
2
2
(ρ>0,0≤θ≤2π),直線(xiàn)l2的參數(shù)方程為
x=1-2t
y=2t+2
(t為參數(shù)),則l1與l2的交點(diǎn)A的直角坐標(biāo)是
(1,2)
(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶二模)定義全集U的子集M的特征函數(shù)為fM(x)=
1,x∈M
0,x∈CUM
,這里?UM表示集合M在全集U中的補(bǔ)集,已M⊆U,N⊆U,給出以下結(jié)論:
①若M⊆N,則對(duì)于任意x∈U,都有fM(x)≤fN(x);
②對(duì)于任意x∈U都有fCUM(x)=1-fM(x);
③對(duì)于任意x∈U,都有fM∩N(x)=fM(x)•fN(x);
④對(duì)于任意x∈U,都有fM∪N(x)=fM(x)•fN(x).
則結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶二模)不等式|2x+1|>|5-x|的解集是
(-∞,-6)∪(
4
3
,+∞)
(-∞,-6)∪(
4
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶二模)在等差數(shù)列{an}中,a15=33,a25=66,則a35=
99
99

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶二模)
π
2
0
(3x+sinx)dx=
3
8
π2+1
3
8
π2+1

查看答案和解析>>

同步練習(xí)冊(cè)答案