如圖,四邊形ABCD為正方形,四邊形BDEF為矩形,AB=2BF,DE丄平面ABCD,G為EF中點.
(1)求證:CF∥平面ADE;
(2)求證:平面ABG丄平面CDG.

【答案】分析:(1)利用平面BCF中,有兩條相交直線BC和BF平行于兩一個平面中的兩條相交直線 AD 和DE,得到平面BCF∥平面ADE.
(2)由勾股定理 求得GM、GN的長,證明GM⊥GN,利用等腰三江凹形的性質(zhì)證明GN⊥CD,從而GN⊥AB,得到 GN垂直于平面ABG,從而證得平面ABG丄平面CDG.
解答:證明:(1)∵四邊形ABCD為正方形,四邊形BDEF為矩形,∴BC∥AD,BF∥DE,這樣,平面BCF中,
有兩條相交直線BC,BF平行于兩一個平面中的兩條相交直線 AD,DE,故有平面BCF∥平面ADE,
∴CF∥平面ADE.
(2)取AB的中點M,CD的中點N.∵AB=2BF,設(shè)BF=1,則AB=2.∵DE丄平面ABCD,
可得面BDEF⊥面ABCD.設(shè)AC 和BD交于點 O,則GO⊥面ABCD.
∴GM===GN,又 MN=2,∴由勾股定理可得 GM⊥GN.
由G為EF中點,可得GC=GD=,∴GN⊥CD,GN⊥AB.這樣面CDG中的直線GN垂直于平面GAB內(nèi)的
兩條相交直線AB和 GM,∴平面ABG丄平面CDG.
點評:本題考查證明線面平行、面面垂直的方法,線面平行、面面垂直的判定定理,證明GN垂直于平面ABG,是解題的難點和關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD與A′ABB′都是邊長為a的正方形,點E是A′A的中點,A′A⊥平面ABCD.
(1) 求證:A′C∥平面BDE;
(2) 求證:平面A′AC⊥平面BDE
(3) 求平面BDE與平面ABCD所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)證明PQ⊥平面DCQ;
(Ⅱ)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E為BC的中點.
(1)求點C到面PDE的距離;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD內(nèi)接于⊙O,如果它的一個外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷