【題目】已知函數(shù)y=f(x)(x∈R)d的導(dǎo)函數(shù)為f′(x),若f(x)﹣f(﹣x)=2x3 , 且當(dāng)x≥0時(shí),f′(x)>3x2 , 則不等式f(x)﹣f(x﹣1)>3x2﹣3x+1的解集是

【答案】( ,+∞)
【解析】解:令F(x)=f(x)﹣x3 , 則由f(x)﹣f(﹣x)=2x3 , 可得F(﹣x)=F(x),故F(x)為偶函數(shù),
又當(dāng)x≥0時(shí),f′(x)>3x2即F′(x)>0,
所以F(x)在(0,+∞)上為增函數(shù).
不等式f(x)﹣f(x﹣1)>3x2﹣3x+1化為F(x)>F(x﹣1),
所以有|x|>|x﹣1|,
解得x>
所以答案是( ,+∞).
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且(Sn﹣1)2=anSn(n∈N*).
(1)求S1 , S2 , S3的值;
(2)求出Sn及數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)bn=(﹣1)n1(n+1)2anan+1(n∈N*),求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為
(1)求曲線C1 , C2的直角坐標(biāo)方程;
(2)已知點(diǎn)P,Q分別是線C1 , C2的動(dòng)點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=(log2x)2﹣2alog2x+b(x>0).當(dāng)x= 時(shí),f(x)有最小值﹣1.
(1)求a與b的值;
(2)求滿足f(x)<0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動(dòng)直線2ax+(a+c)y+2c=0(a∈R,c∈R)過定點(diǎn)(m,n),x1+x2+m+n=15 且x1>x2 , 則 的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】省環(huán)保廳對(duì)三個(gè)城市同時(shí)進(jìn)行了多天的空氣質(zhì)量監(jiān)測(cè),測(cè)得三個(gè)城市空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)共有180個(gè),三城市各自空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)個(gè)數(shù)如下表所示:

優(yōu)(個(gè))

28

良(個(gè))

32

30

已知在這180個(gè)數(shù)據(jù)中隨機(jī)抽取一個(gè),恰好抽到記錄城市空氣質(zhì)量為優(yōu)的數(shù)據(jù)的概率為0.2.

(1)現(xiàn)按城市用分層抽樣的方法,從上述180個(gè)數(shù)據(jù)中抽取30個(gè)進(jìn)行后續(xù)分析,求在城中應(yīng)抽取的數(shù)據(jù)的個(gè)數(shù);

(2)已知, ,求在城中空氣質(zhì)量為優(yōu)的天數(shù)大于空氣質(zhì)量為良的天數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x(x﹣1)2 , x>0.
(1)求f(x)的極值;
(2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù) 的最小值;
(3)設(shè)函數(shù)g(x)=lnx﹣2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實(shí)數(shù)m有且只有一個(gè),求實(shí)數(shù)m和t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若曲線處的切線方程為,求的極值;

(2)若,是否存在,使的極值大于零?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)事件A表示“關(guān)于的一元二次方程有實(shí)根”,其中, 為實(shí)常數(shù).

(Ⅰ)若為區(qū)間[0,5]上的整數(shù)值隨機(jī)數(shù), 為區(qū)間[0,2]上的整數(shù)值隨機(jī)數(shù),求事件A發(fā)生的概率;

(Ⅱ)若為區(qū)間[0,5]上的均勻隨機(jī)數(shù), 為區(qū)間[0,2]上的均勻隨機(jī)數(shù),求事件A發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案