從大量面值為一元和五元的紙幣中取出若干張,使總值為100元,求:
(1)共有多少種取法?
(2)每種取法中各種面值的紙幣各為多少張?
(3)畫出算法的程序框圖.
考點:設計程序框圖解決實際問題,列舉法計算基本事件數(shù)及事件發(fā)生的概率
專題:算法和程序框圖
分析:(1)設x和y分別表示一元和五元的紙幣張數(shù),有x+5y=100,共有21種取法.
(2)由x+5y=100,y的取值范圍為[0,20]上的整數(shù),把滿足條件的x,y列表寫出即可.
(3)由(1)(2)可確定算法畫出程序框圖.
解答: 解:(1)設x和y分別表示一元和五元的紙幣張數(shù),顯然有x+5y=100,y的取值范圍為[0,20]上的整數(shù),故共有21種取法.
(2)每種取法中各種面值的紙幣數(shù)如下表(x和y分別表示一元和五元的紙幣張數(shù)):

(3)算法的程序框圖如下:
點評:本題主要考察設計程序框圖解決實際問題,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
loga(3x-2)  (x≥1)
(a-1)x-1  (x<1)
在R上為增函數(shù),則a的取值范圍是(  )
A、(1,2]
B、(1,+∞)
C、[1,+∞)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=0,an+1=an+2n,那么a2015的值是( 。
A、2 012×2 013
B、2 014×2 015
C、2 0142
D、2 013×2 014

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩正數(shù)x、y滿足x+y=2,求
x
y
-4x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,在區(qū)間(0,1)上是遞增函數(shù)的是( 。
A、y=|x+1|
B、y=3-x
C、y=
1
x
D、y=-x2+4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xcosx-sinx+
1
4
x2,當x∈(0,π)時,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=-x(x-a)2(x∈R),其中a∈R.
(Ⅰ)當a=1時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)當a>0時,求函數(shù)f(x)的極大值和極小值;
(Ⅲ)當a>3時,在區(qū)間[-1,0]上是否有實數(shù)k使不等式f(k-cosx)≥f(k2-cos2x),對任意的x∈R恒成立,若存在,求出k的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓E1
x2
a2
+
y2
b2
=1(a>b>0)的左右頂點分別為A,A',圓E2:x2+y2=a2,過橢圓的左頂點A作斜率為k1直線l1與橢圓E1和圓E2分別相交于B、C.
(1)證明:kBA•kBA′=-
b2
a2

(2)若k1=1時,B恰好為線段AC的中點,且a=3,試求橢圓的方程;
(3)設D為圓E2上不同于A的一點,直線AD的斜率為k2,當
k2
k1
=
a2
b2
時,試問直線BD是否過定點?若過定點,求出定點坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若cos(
π
2
+A)sin(
2
+B)tan(C-π)<0,求證:△ABC是鈍角三角形.

查看答案和解析>>

同步練習冊答案