四棱錐中,底面為平行四邊形,側面底面, 的中點,已知,
(Ⅰ)求證:
(Ⅱ)在上求一點,使平面;
(Ⅲ)求三棱錐的體積.

(1)(2)見證明過程;(3) 

解析試題分析:(Ⅰ)要證線線垂直只要證明線面垂直,利用題中數(shù)據(jù)求出底面平行四邊形的各邊的長度,找到 及 是等腰三角形,利用等腰三角形中線是高結論找到“線線垂直”關系(Ⅱ)要找線面平行先找線線平行,要找線線平行先找面面交線,即平面 與平面交線 , 注意到為中點的特點,即可導致,從而推出線面平行.
試題解析:(Ⅰ)證明:連接AC,

由余弦定理得,    1分
中點,連接,則.
 
          4分
(Ⅱ)當的中點時,  5分
證明:取中點,連接.
的中點,

四邊形為平行四邊形,.                          7分
,,即.     8分
(Ⅲ),面,,
,且1,的中點,到面的距離為.  10分
                                 12分
考點:線面平行與垂直,及椎體體積公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形為矩形,平面,,平面于點,且點上.

(1)求證:;
(2)求四棱錐的體積;
(3)設點在線段上,且,試在線段上確定一點,使得平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐的底面是正方形,,點在棱上.

(1)求證:平面平面;
(2)當,且時,確定點的位置,即求出的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知三棱錐中,,,中點, 中點,且為正三角形。

(Ⅰ)求證://平面;
(Ⅱ)求證:平面⊥平面;
(III)若,,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知三棱柱,底面三角形為正三角形,側棱底面,,的中點,中點.

(Ⅰ)求證:直線平面;
(Ⅱ)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某高速公路收費站入口處的安全標識墩如圖1所示。墩的上半部分是正四棱錐,下半部分是長方體。圖2、圖3分別是該標識墩的正(主)視圖和俯視圖。

圖1             圖2               圖3
(1)請在正視圖右側畫出該安全標識墩的側(左)視圖;
(2)求該安全標識墩的體積;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖.在直棱柱ABC-A1B1C1中,∠ BAC=90°,AB=AC=,AA1=3,D是BC的中點,點E在菱BB1上運動。

(1)證明:AD⊥C1E;
(2)當異面直線AC,C1E 所成的角為60°時,求三棱錐C1-A1B1E的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(文科)長方體中,,是底面對角線的交點.

(Ⅰ) 求證:平面
(Ⅱ) 求證:平面;
(Ⅲ) 求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)如圖,在直三棱柱中,底面為等邊三角形,且,、、分別是,的中點.

(1)求證:;
(2)求證:;
(3) 求直線與平面所成的角.

查看答案和解析>>

同步練習冊答案