【題目】已知正四棱錐的底面邊長(zhǎng)和高都為2.現(xiàn)從該棱錐的5個(gè)頂點(diǎn)中隨機(jī)選取3個(gè)點(diǎn)構(gòu)成三角形,設(shè)隨機(jī)變量表示所得三角形的面積.
(1)求概率的值;
(2)求隨機(jī)變量的概率分布及其數(shù)學(xué)期望.
【答案】(1)(2)見(jiàn)解析
【解析】
(1)由題意,分別得出“從5個(gè)頂點(diǎn)中隨機(jī)選取3個(gè)點(diǎn)構(gòu)成三角形”和“”所包含的基本事件個(gè)數(shù),基本事件個(gè)數(shù)比即為所求概率;
(2)先由題意得到的可能取值,求出對(duì)應(yīng)的概率,進(jìn)而可得到分布列,求出期望.
解:(1)從5個(gè)頂點(diǎn)中隨機(jī)選取3個(gè)點(diǎn)構(gòu)成三角形,
共有種取法.其中的三角形如,
這類(lèi)三角形共有個(gè).
因此.
(2)由題意,的可能取值為,2,.
其中的三角形是側(cè)面,這類(lèi)三角形共有4個(gè);
其中的三角形有兩個(gè),和.
因此,.
所以隨機(jī)變量的概率分布列為:
2 | |||
所求數(shù)學(xué)期望
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一工廠對(duì)某條生產(chǎn)線(xiàn)加工零件所花費(fèi)時(shí)間進(jìn)行統(tǒng)計(jì),得到如下表的數(shù)據(jù):
零件數(shù)x(個(gè)) | 10 | 20 | 30 | 40 | 50 |
加工時(shí)間y(分鐘) | 62 | 68 | 75 | 82 | 88 |
(1)從加工時(shí)間的五組數(shù)據(jù)中隨機(jī)選擇兩組數(shù)據(jù),求該兩組數(shù)據(jù)中至少有一組數(shù)據(jù)小于加工時(shí)間的均值的概率;
(2)若加工時(shí)間與零件數(shù)具有相關(guān)關(guān)系,求關(guān)于的回歸直線(xiàn)方程;若需加工個(gè)零件,根據(jù)回歸直線(xiàn)預(yù)測(cè)其需要多長(zhǎng)時(shí)間.
(,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分12分)如圖, 是圓的直徑,點(diǎn)是圓上異于的點(diǎn), 垂直于圓所在的平面,且.
(Ⅰ)若為線(xiàn)段的中點(diǎn),求證平面;
(Ⅱ)求三棱錐體積的最大值;
(Ⅲ)若,點(diǎn)在線(xiàn)段上,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展,個(gè)人收入的提高,自2019年1月1日起,個(gè)人所得稅起征點(diǎn)和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額.依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:
個(gè)人所得稅稅率表(調(diào)整前) | 個(gè)人所得稅稅率表(調(diào)整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) | 級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) |
1 | 不超過(guò)1500元部分 | 3 | 1 | 不超過(guò)3000元部分 | 3 |
2 | 超過(guò)1500元至4500元的部分 | 10 | 2 | 超過(guò)3000元至12000元的部分 | 10 |
3 | 超過(guò)4500元至9000元的部分 | 20 | 3 | 超過(guò)12000元至25000元的部分 | 20 |
... | ... | ... | ... | ... | ... |
(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,表示應(yīng)納的稅,試寫(xiě)出調(diào)整前后關(guān)于的函數(shù)表達(dá)式;
(2)某稅務(wù)部門(mén)在小紅所在公司利用分層抽樣方法抽取某月100個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
收入(元) | ||||||
人數(shù) | 30 | 40 | 10 | 8 | 7 | 5 |
先從收入在及的人群中按分層抽樣抽取7人,再?gòu)闹羞x2人作為新納稅法知識(shí)宣講員,求兩個(gè)宣講員不全是同一收入人群的概率;
(3)小紅該月的工資、薪金等稅前收入為7500元時(shí),請(qǐng)你幫小紅算一下調(diào)整后小紅的實(shí)際收入比調(diào)整前增加了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了解廣告投入對(duì)銷(xiāo)售收益的影響,在若干地區(qū)各投入4萬(wàn)元廣告費(fèi)用,并將各地的銷(xiāo)售收益繪制成頻率分布直方圖(如圖所示).由于工作人員失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開(kāi)始計(jì)數(shù)的.
(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;
(2)估計(jì)該公司投入4萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷(xiāo)售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(3)該公司按照類(lèi)似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:
廣告投入x(單位:萬(wàn)元) | 1 | 2 | 3 | 4 | 5 |
銷(xiāo)售收益y(單位:萬(wàn)元) | 1 | 3 | 4 | 7 |
表中的數(shù)據(jù)顯示,x與y之間存在線(xiàn)性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入上表的空白欄,并計(jì)算y關(guān)于x的回歸方程.
回歸直線(xiàn)的斜率和截距的最小二乘法估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中:
①若命題,,則,;
②將的圖象沿軸向右平移個(gè)單位,得到的圖象對(duì)應(yīng)函數(shù)為;
③“”是“”的充分必要條件;
④已知為圓內(nèi)異于圓心的一點(diǎn),則直線(xiàn)與該圓相交.
其中正確的個(gè)數(shù)是( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,圓N與圓M關(guān)于直線(xiàn)對(duì)稱(chēng).
(1)求圓N的方程.
(2)是否存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線(xiàn)和,使得被圓M截得的弦長(zhǎng)與被圓N截得的弦長(zhǎng)相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)正數(shù)數(shù)列的前項(xiàng)和為,對(duì)于任意,是和的等差中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),是的前項(xiàng)和,是否存在常數(shù),對(duì)任意,使恒成立?若存在,求取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)某種產(chǎn)品,一條流水線(xiàn)年產(chǎn)量為件,該生產(chǎn)線(xiàn)分為兩段,流水線(xiàn)第一段生產(chǎn)的半成品的質(zhì)量指標(biāo)會(huì)影響第二段生產(chǎn)成品的等級(jí),具體見(jiàn)下表:
第一段生產(chǎn)的半成品質(zhì)量指標(biāo) | 或 | 或 | |
第二段生產(chǎn)的成品為一等品概率 | 0.2 | 0.4 | 0.6 |
第二段生產(chǎn)的成品為二等品概率 | 0.3 | 0.3 | 0.3 |
第二段生產(chǎn)的成品為三等品概率 | 0.5 | 0.3 | 0.1 |
從第一道生產(chǎn)工序抽樣調(diào)查了件,得到頻率分布直方圖如圖:
若生產(chǎn)一件一等品、二等品、三等品的利潤(rùn)分別是元、元、元.
(Ⅰ)以各組的中間值估計(jì)為該組半成品的質(zhì)量指標(biāo),估算流水線(xiàn)第一段生產(chǎn)的半成品質(zhì)量指標(biāo)的平均值;
(Ⅱ)將頻率估計(jì)為概率,試估算一條流水線(xiàn)一年能為該公司創(chuàng)造的利潤(rùn);
(Ⅲ)現(xiàn)在市面上有一種設(shè)備可以安裝到流水線(xiàn)第一段,價(jià)格是萬(wàn)元,使用壽命是年,安裝這種設(shè)備后,流水線(xiàn)第一段半成品的質(zhì)量指標(biāo)服從正態(tài)分布,且不影響產(chǎn)量.請(qǐng)你幫該公司作出決策,是否要購(gòu)買(mǎi)該設(shè)備?說(shuō)明理由.
(參考數(shù)據(jù):,,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com