【題目】如圖,在四棱錐中,底面為直角梯形, , 和均為等邊三角形,且平面平面,點(diǎn)為的中點(diǎn).
(1)求證: 平面;
(2)求平面與平面所成的銳二面角的余弦值.
【答案】(1)證明見(jiàn)解析;(2) .
【解析】試題分析:(1)先證四邊形為矩形 , ,再證得, , 四邊形是平行四邊形 面;(2)先建立坐標(biāo)系求得面、面的法向量分別為, , 所求的余弦值: .
試題解析:(1)過(guò)點(diǎn)作交于點(diǎn),連接;
取的中點(diǎn),連接
∵是等邊底邊的中線,
∴.
∵,
∴四邊形為矩形,
∴, .
∵為底邊的中位線
∴, ,
∴, ,
四邊形是平行四邊形,
∴,
∵面,
∴面.
(2)以點(diǎn)為坐標(biāo)原點(diǎn), 為軸正方向, 為單位長(zhǎng)度建立空間直角坐標(biāo)系
如圖所示,各個(gè)點(diǎn)的坐標(biāo)為, , ,
因此向量, , .
設(shè)面、面的法向量分別為, ,
則,不妨令,解得,同理得
設(shè)平面與平面所成的銳二面角為,
則
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)第一高摩天輪“南昌之星摩天輪”高度為,其中心距地面,半徑為,若某人從最低點(diǎn)處登上摩天輪,摩天輪勻速旋轉(zhuǎn),那么此人與地面的距離將隨時(shí)間變化,后達(dá)到最高點(diǎn),從登上摩天輪時(shí)開(kāi)始計(jì)時(shí).
(1)求出人與地面距離與時(shí)間的函數(shù)解析式;
(2)從登上摩天輪到旋轉(zhuǎn)一周過(guò)程中,有多長(zhǎng)時(shí)間人與地面距離大于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平行六面體中,以頂點(diǎn)為端點(diǎn)的三條棱長(zhǎng)都為1,且兩兩夾角為.
(1)求的長(zhǎng);
(2)求異面直線與夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,BA=BD=,AD=2,PA=PD=,E,F(xiàn)分別是棱AD,PC的中點(diǎn).
(1)證明:EF∥平面PAB;
(2)若二面角P-AD-B為60°.
①證明:平面PBC⊥平面ABCD;
②求直線EF與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓心在軸上的圓經(jīng)過(guò)兩點(diǎn)和,直線的方程為.
(1)求圓的方程;
(2)當(dāng)時(shí),為直線上的定點(diǎn),若圓上存在唯一一點(diǎn)滿足,求定點(diǎn)的坐標(biāo);
(3)設(shè)點(diǎn)A,B為圓上任意兩個(gè)不同的點(diǎn),若以AB為直徑的圓與直線都沒(méi)有公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】知向量,,函數(shù),若的圖象上相鄰兩條對(duì)稱軸的距離為,且圖象過(guò)點(diǎn).
(1)求表達(dá)式和的單調(diào)增區(qū)間;
(2)將函數(shù)的圖象向右平移個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,若函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,銷售利潤(rùn)分別為2千元/件、1千元/件.甲、乙兩種產(chǎn)品都需要在兩種設(shè)備上加工,生產(chǎn)一件甲產(chǎn)品需用設(shè)備2小時(shí), 設(shè)備6小時(shí);生產(chǎn)一件乙產(chǎn)品需用設(shè)備3小時(shí), 設(shè)備1小時(shí). 兩種設(shè)備每月可使用時(shí)間數(shù)分別為480小時(shí)、960小時(shí),若生產(chǎn)的產(chǎn)品都能及時(shí)售出,則該企業(yè)每月利潤(rùn)的最大值為( )
A. 320千元 B. 360千元 C. 400千元 D. 440千元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, 是等邊三角形, 為的中點(diǎn),四邊形為直角梯形, .
(1)求證:平面平面;
(2)求四棱錐的體積;
(3)在棱上是否存在點(diǎn),使得平面?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com