設(shè)F1、F2是雙曲線的兩個焦點,P在雙曲線上,且滿足∠F1PF2=90°,則△PF1F2的面積是(    )
A.1B.C.2D.
A

試題分析:設(shè)|PF1|=x,|PF2|=y,根據(jù)根據(jù)雙曲線性質(zhì)可知x-y的值,再根據(jù)∠F1PF2=90°,求得x2+y2的值,進而根據(jù)2xy= -(x-y)求得xy,進而可求得∴△F1PF2的面積. 解:設(shè)|PF1|=x,|PF2|=y,(x>y),根據(jù)雙曲線性質(zhì)可知x-y=4,∵∠F1PF2=90°,∴,∴2xy=-(x-y)=4,∴xy=2,∴△F1PF2的面積為 =1,故選A
點評:本題主要考查了雙曲線的簡單性質(zhì).要靈活運用雙曲線的定義及焦距、實軸、虛軸等之間的關(guān)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,左、右兩個焦點分別為,上頂點為正三角形且周長為6.
(1)求橢圓的標準方程及離心率;
(2)為坐標原點,是直線上的一個動點,求的最小值,并求出此時點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓與曲線的離心率互為倒數(shù),則(  )
A.16B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

長為3的線段的端點分別在軸上移動,動點滿足,則動點的軌跡方程是              

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在拋物線上,橫坐標為的點到焦點的距離為,則的值為(   )
A.0.5B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓和雙曲線有公共的焦點,那么雙曲線的漸近線方程是           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在原點,焦點在坐標軸上的橢圓,它的離心率為,一個焦點和拋物線的焦點重合,過直線上一點引橢圓的兩條切線,切點分別是.
(Ⅰ)求橢圓的方程;
(Ⅱ)若在橢圓上的點處的橢圓的切線方程是. 求證:直線恒過定點;并出求定點的坐標.
(Ⅲ)是否存在實數(shù),使得恒成立?(點為直線恒過的定點)若存在,求出的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線與平面平行,P是直線上的一點,平面內(nèi)的動點B滿足:PB與直線。那么B點軌跡是                           
A.雙曲線B.橢圓C.拋物線D.兩直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線的左右頂點分別是,點是雙曲線上異于點的任意一點。若直線的斜率之積等于2,則該雙曲線的離心率等于        

查看答案和解析>>

同步練習(xí)冊答案