【題目】四棱錐中,底面為平行四邊形,側(cè)面底面,已知.
(1)求證:;
(2)求直線與平面所成角的正弦值.
【答案】(1)證明見解析(2)
【解析】
取BC中點(diǎn)O,連接OS,OA,利用余弦定理計(jì)算OA得出,又得出平面SOA,故而;
以O為原點(diǎn)建立坐標(biāo)系,求出和平面SAB的法向量,則直線SD與面SAB所成角的正弦值為.
取BC中點(diǎn)O,連接OS,OA.
,,,
.
,.
,O是BC的中點(diǎn),
,
又平面SOA,平面SOA,,
平面SOA,
平面SOA,
.
,O是BC中點(diǎn),
.
側(cè)面面ABCD,側(cè)面面,
平面ABCD.
以O為原點(diǎn),以OA,OB,OS為坐標(biāo)軸建立空間直角坐標(biāo)系,如圖所示,
則0,,,0,,,
,0,,.
設(shè)平面SAB法向量為y,,則,
令,則,,
1,
,.
直線SD與面SAB所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價(jià)格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對(duì)這四種水果進(jìn)行促銷:一次購買水果的總價(jià)達(dá)到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會(huì)得到支付款的80%.
①當(dāng)x=10時(shí),顧客一次購買草莓和西瓜各1盒,需要支付__________元;
②在促銷活動(dòng)中,為保證李明每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,,)圖象上兩個(gè)相鄰的最值點(diǎn)為和
(1)求函數(shù)的解析式;
(2)求函數(shù)在區(qū)間上的對(duì)稱中心、對(duì)稱軸;
(3)將函數(shù)圖象上每一個(gè)點(diǎn)向右平移個(gè)單位得到函數(shù),令,求函數(shù)在區(qū)間上的最大值,并指出此時(shí)x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=(-x2+ax)ex(x∈R).
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(-1,1)上單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地級(jí)市共有中小學(xué)生,其中有學(xué)生在年享受了“國家精準(zhǔn)扶貧”政策,在享受“國家精準(zhǔn)扶貧”政策的學(xué)生中困難程度分為三個(gè)等次:一般困難、很困難、特別困難,且人數(shù)之比為,為進(jìn)一步幫助這些學(xué)生,當(dāng)?shù)厥姓O(shè)立“專項(xiàng)教育基金”,對(duì)這三個(gè)等次的困難學(xué)生每年每人分別補(bǔ)助元、元、元,經(jīng)濟(jì)學(xué)家調(diào)查發(fā)現(xiàn),當(dāng)?shù)厝司芍淠晔杖胼^上一年每增加,一般困難的學(xué)生中有會(huì)脫貧,脫貧后將不再享受“精準(zhǔn)扶貧”政策,很困難的學(xué)生中有轉(zhuǎn)為一般困難,特別困難的學(xué)生中有轉(zhuǎn)為很困難.現(xiàn)統(tǒng)計(jì)了該地級(jí)市年到年共年的人均可支配年收入,對(duì)數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中統(tǒng)計(jì)量的值,其中年份取時(shí)代表年,與(萬元)近似滿足關(guān)系式,其中,為常數(shù).(年至年該市中學(xué)生人數(shù)大致保持不變)
其中,
(1)估計(jì)該市年人均可支配年收入;
(2)求該市年的“專項(xiàng)教育基金”的財(cái)政預(yù)算大約為多少?
附:對(duì)于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),,,,其回歸直線方程的斜率和截距的最小二乘估計(jì)分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班隨機(jī)抽查了名學(xué)生的數(shù)學(xué)成績,分?jǐn)?shù)制成如圖的莖葉圖,其中組學(xué)生每天學(xué)習(xí)數(shù)學(xué)時(shí)間不足個(gè)小時(shí),組學(xué)生每天學(xué)習(xí)數(shù)學(xué)時(shí)間達(dá)到一個(gè)小時(shí),學(xué)校規(guī)定分及分以上記為優(yōu)秀,分及分以上記為達(dá)標(biāo),分以下記為未達(dá)標(biāo).
(1)根據(jù)莖葉圖完成下面的列聯(lián)表:
達(dá)標(biāo) | 未達(dá)標(biāo) | 總計(jì) | |
組 | |||
組 | |||
總計(jì) |
(2)判斷是否有的把握認(rèn)為“數(shù)學(xué)成績達(dá)標(biāo)與否”與“每天學(xué)習(xí)數(shù)學(xué)時(shí)間能否達(dá)到一小時(shí)”有關(guān).
參考公式與臨界值表:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題,;命題關(guān)于的方程有兩個(gè)相異實(shí)數(shù)根.
(1)若為真命題,求實(shí)數(shù)的取值范圍;
(2)若為真命題,為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖有一景區(qū)的平面圖是一半圓形,其中直徑長為兩點(diǎn)在半圓弧上滿足,設(shè),現(xiàn)要在景區(qū)內(nèi)鋪設(shè)一條觀光通道,由和 組成.
(1)用表示觀光通道的長,并求觀光通道的最大值;
(2)現(xiàn)要在景區(qū)內(nèi)綠化,其中在中種植鮮花,在中種植果樹,在扇形內(nèi)種植草坪,已知單位面積內(nèi)種植鮮花和種植果樹的利潤均是種植草坪利潤的 倍,則當(dāng)為何值時(shí)總利潤最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com