平面上有兩點,點在圓周上,求使取最小值時點的坐標。
在Δ中有,即當最小時,取最小值,而, 
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓x2+y2-2(m-1)x+2(m -1)y+2 m 2-6 m+4=0過坐標原點,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知一動圓M,恒過點F,且總與直線相切.
(Ⅰ)求動圓圓心M的軌跡C的方程;
(Ⅱ)探究在曲線C上,是否存在異于原點的兩點,當時,
直線AB恒過定點?若存在,求出定點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求過點且與直線相切的圓的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(選修4-1 幾何證明選講)
如圖,已知:C是以AB為直徑的半圓O上一點,
CH⊥AB于點H,直線AC與過B點的切線相交于
點D,E為CH中點,連接AE并延長交BD于點F,
直線CF交直線AB于點G.
(Ⅰ)求證:F是BD的中點;
(Ⅱ)求證:CG是⊙O的切線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,設△ABC的頂點分別為A(0,2),B(-1,0),C(2,0),圓M是△ABC的外接圓,直線l的方程是(2+m)x+(2m-1)y-3m-1=0(m∈R)
(1)求圓M的方程;
(2)證明:直線l與圓M相交;
(3)若直線l被圓M截得的弦長為3,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程x2y2DxEyF=0(D2E2-4F>0)表示的曲線關于x+y=0成軸對稱圖形,則
A.D+E="0B.   "  B.D+F="0    " C.E+F="0"      D. D+E+F=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線被圓所截得的弦長為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

由動點向圓引兩條切線,切點分別為,則
動點的軌跡方程為                  。

查看答案和解析>>

同步練習冊答案