【題目】隨著社會(huì)的進(jìn)步與發(fā)展,中國(guó)的網(wǎng)民數(shù)量急劇增加.下表是中國(guó)從年網(wǎng)民人數(shù)及互聯(lián)網(wǎng)普及率、手機(jī)網(wǎng)民人數(shù)(單位:億)及手機(jī)網(wǎng)民普及率的相關(guān)數(shù)據(jù).
年份 | 網(wǎng)民人數(shù) | 互聯(lián)網(wǎng)普及率 | 手機(jī)網(wǎng)民人數(shù) | 手機(jī)網(wǎng)民普及率 |
2009 | ||||
2010 | ||||
2011 | ||||
2012 | ||||
2013 | ||||
2014 | ||||
2015 | ||||
2016 | ||||
2017 | ||||
2018 |
(互聯(lián)網(wǎng)普及率(網(wǎng)民人數(shù)/人口總數(shù))×100%;手機(jī)網(wǎng)民普及率(手機(jī)網(wǎng)民人數(shù)/人口總數(shù))×100%)
(Ⅰ)從這十年中隨機(jī)選取一年,求該年手機(jī)網(wǎng)民人數(shù)占網(wǎng)民總?cè)藬?shù)比值超過(guò)80%的概率;
(Ⅱ)分別從網(wǎng)民人數(shù)超過(guò)6億的年份中任選兩年,記為手機(jī)網(wǎng)民普及率超過(guò)50%的年數(shù),求的分布列及數(shù)學(xué)期望;
(Ⅲ)若記年中國(guó)網(wǎng)民人數(shù)的方差為,手機(jī)網(wǎng)民人數(shù)的方差為,試判斷與的大小關(guān)系.(只需寫(xiě)出結(jié)論)
【答案】(Ⅰ);(Ⅱ)分布列見(jiàn)解析,;(Ⅲ)
【解析】
(Ⅰ)由表格得出手機(jī)網(wǎng)民人數(shù)占網(wǎng)民總?cè)藬?shù)比值超過(guò)的年份,由概率公式計(jì)算即可;
(Ⅱ)由表格得出的可能取值,求出對(duì)應(yīng)的概率,列出分布列,計(jì)算數(shù)學(xué)期望即可;
(Ⅲ)觀察兩組數(shù)據(jù),可以發(fā)現(xiàn)網(wǎng)民人數(shù)集中在之間的人數(shù)多于手機(jī)網(wǎng)民人數(shù),則網(wǎng)民人數(shù)比較集中,而手機(jī)網(wǎng)民人數(shù)較為分散,由此可得出.
解:(Ⅰ)設(shè)事件:“從這十年中隨機(jī)選取一年,該年手機(jī)網(wǎng)民人數(shù)占網(wǎng)民總?cè)藬?shù)比值超過(guò)”.
由題意可知:該年手機(jī)網(wǎng)民人數(shù)占網(wǎng)民總?cè)藬?shù)比值超過(guò)80%的年份為,共6個(gè)
則.
(Ⅱ)網(wǎng)民人數(shù)超過(guò)6億的年份有共六年,其中手機(jī)網(wǎng)民普及率超過(guò) 的年份有這年.所以的取值為.
所以, , .
隨機(jī)變量的分布列為
|
|
| |
.
(Ⅲ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線(xiàn):,過(guò)拋物線(xiàn)焦點(diǎn)且與軸垂直的直線(xiàn)與拋物線(xiàn)相交于、兩點(diǎn),且的周長(zhǎng)為.
(1)求拋物線(xiàn)的方程;
(2)若直線(xiàn)過(guò)焦點(diǎn)且與拋物線(xiàn)相交于、兩點(diǎn),過(guò)點(diǎn)、分別作拋物線(xiàn)的切線(xiàn)、,切線(xiàn)與相交于點(diǎn),求:的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,為梯形,,,,,,.
(1)在線(xiàn)段上有一個(gè)動(dòng)點(diǎn),滿(mǎn)足且平面,求實(shí)數(shù)的值;
(2)已知與的交點(diǎn)為,若,且平面,求二面角平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓的離心率為,分別是橢圓的左右焦點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),且.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)在直線(xiàn)上是否存在點(diǎn)Q,使以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O,若存在,求出線(xiàn)段的長(zhǎng)的最小值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)若是函數(shù)的導(dǎo)函數(shù)的零點(diǎn),求的單調(diào)區(qū)間;
(2)若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的奇函數(shù)在上單調(diào)遞減,且,,,則的值( )
A. 恒為正B. 恒為負(fù)C. 恒為0D. 無(wú)法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,,E為AB的中點(diǎn).將沿DE翻折,得到四棱錐.設(shè)的中點(diǎn)為M,在翻折過(guò)程中,有下列三個(gè)命題:
①總有平面;
②線(xiàn)段BM的長(zhǎng)為定值;
③存在某個(gè)位置,使DE與所成的角為90°.
其中正確的命題是_______.(寫(xiě)出所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:上的點(diǎn)到右焦點(diǎn)F的最大距離為,離心率為.
求橢圓C的方程;
如圖,過(guò)點(diǎn)的動(dòng)直線(xiàn)l交橢圓C于M,N兩點(diǎn),直線(xiàn)l的斜率為,A為橢圓上的一點(diǎn),直線(xiàn)OA的斜率為,且,B是線(xiàn)段OA延長(zhǎng)線(xiàn)上一點(diǎn),且過(guò)原點(diǎn)O作以B為圓心,以為半徑的圓B的切線(xiàn),切點(diǎn)為令,求取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】無(wú)窮等差數(shù)列的各項(xiàng)均為整數(shù),首項(xiàng)為、公差為,是其前項(xiàng)和,是其中的三項(xiàng),給出下列命題:
①對(duì)任意滿(mǎn)足條件的,存在,使得一定是數(shù)列中的一項(xiàng);
②存在滿(mǎn)足條件的數(shù)列,使得對(duì)任意的,成立;
③對(duì)任意滿(mǎn)足條件的,存在,使得一定是數(shù)列中的一項(xiàng)。
其中正確命題的序號(hào)為( )
A.①②B.②③C.①③D.①②③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com