已知橢圓的左、右焦點(diǎn)分別為,為原點(diǎn).
(1)如圖1,點(diǎn)為橢圓上的一點(diǎn),的中點(diǎn),且,求點(diǎn)軸的距離;

(2)如圖2,直線與橢圓相交于、兩點(diǎn),若在橢圓上存在點(diǎn),使四邊形為平行四邊形,求的取值范圍.
(1);(2).

試題分析:(1)先設(shè)點(diǎn)的坐標(biāo),并利用點(diǎn)的坐標(biāo)來(lái)表示點(diǎn)的坐標(biāo),利用以及點(diǎn)在橢圓上列方程組求解點(diǎn)的坐標(biāo),從而求出點(diǎn)軸的距離;(2)先設(shè)點(diǎn)、,利用為平行四邊形,得到,將直線方程與橢圓方程聯(lián)立,結(jié)合韋達(dá)定理與點(diǎn)在橢圓上這一條件,列相應(yīng)等式求出實(shí)數(shù)的取值范圍.
試題解析:(1)由已知得、,
設(shè),則的中點(diǎn)為,
,,即,
整理得,①,又有,②
由①②聯(lián)立解得(舍)
點(diǎn)軸的距離為;
(2)設(shè),,
四邊形是平行四邊形
線段的中點(diǎn)即為線段的中點(diǎn),即,,
點(diǎn)在橢圓上,,
,
化簡(jiǎn)得,
,
,④
,代入③式得
整理得代入④式得,又,,
的取值范圍是.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的雙曲線經(jīng)過(guò)、兩點(diǎn)
(1)求雙曲線的方程;
(2)設(shè)直線交雙曲線、兩點(diǎn),且線段被圓三等分,求實(shí)數(shù)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn),.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左、右焦點(diǎn)分別為,過(guò)點(diǎn)的直線交橢圓兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)在拋物線上.
(1)若的三個(gè)頂點(diǎn)都在拋物線上,記三邊,所在直線的斜率分別為,,,求的值;
(2)若四邊形的四個(gè)頂點(diǎn)都在拋物線上,記四邊,,所在直線的斜率分別為,,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓上的點(diǎn)到其兩焦點(diǎn)距離之和為,且過(guò)點(diǎn)
(Ⅰ)求橢圓方程;
(Ⅱ)為坐標(biāo)原點(diǎn),斜率為的直線過(guò)橢圓的右焦點(diǎn),且與橢圓交于點(diǎn),若,求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,且,長(zhǎng)軸的一個(gè)端點(diǎn)與短軸兩個(gè)端點(diǎn)組成等邊三角形的三個(gè)頂點(diǎn).
(1)求橢圓方程;
(2)設(shè)橢圓與直線相交于不同的兩點(diǎn)M、N,又點(diǎn),當(dāng)時(shí),求實(shí)數(shù)m的取值范圍,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn),離心率為
(1)求橢圓C的方程:
(2)過(guò)點(diǎn)Q(1,0)的直線l與橢圓C相交于A、B兩點(diǎn),點(diǎn)P(4,3),記直線PA,PB的斜率分別為k1,k2,當(dāng)k1·k2最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知、為橢圓的左、右焦點(diǎn),且點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)過(guò)的直線交橢圓兩點(diǎn),則的內(nèi)切圓的面積是否存在最大值?
若存在其最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)AB是橢圓的長(zhǎng)軸,點(diǎn)C在橢圓上,且,若AB=4,,則橢圓的兩個(gè)焦點(diǎn)之間的距離為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案