【題目】已知函數(shù)f(x)對任意的a,b∈R,都有f(a+b)=f(a)+f(b)﹣1,且當(dāng)x>0時,f(x)>1
(1)判斷并證明f(x)的單調(diào)性;
(2)若f(4)=3,解不等式f(3m2﹣m﹣2)<2.

【答案】
(1)解:f(a+b)=f(a)+f(b)﹣1,

令a=b=0,

∴f(0)=f(0)+f(0)﹣1,

∴f(0)=1,

令a=x,b=﹣x,

∴f(0)=f(x)+f(﹣x)﹣1,

∴f(﹣x)=2﹣f(x),

令x1<x2,則x2﹣x1>0,

∴f(x2﹣x1)=f(x2)+f(﹣x1)﹣1

=f(x2)+2﹣f(x1)﹣1>1,

∴f(x2)>f(x1),

故函數(shù)在R上單調(diào)遞增;


(2)解:f(4)=2f(2)﹣1=3,

∴f(2)=2,

∴f(3m2﹣m﹣2)<f(2),

∴3m2﹣m﹣2<2,

∴﹣1<m<


【解析】(1)利用特殊值方法求出f(0)=1,和換元思想令a=x,b=﹣x,得出f(﹣x)=2﹣f(x),利用定義法判定函數(shù)的單調(diào)性;(2)根據(jù)定義得出f(2)=2,根據(jù)函數(shù)的單調(diào)性求解即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=ex﹣alnx(其中a∈R,e為自然常數(shù))
a∈R,使得直線y=ex為函數(shù)f(x)的一條切線;
②對a<0,函數(shù)f(x)的導(dǎo)函數(shù)f′(x)無零點;
③對a<0,函數(shù)f(x)總存在零點;
則上述結(jié)論正確的是 . (寫出所有正確的結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx﹣a+2
(1)若關(guān)于x的不等式f(x)>0的解集是(﹣1,3),求實數(shù)a,b的值;
(2)若b=2,a>0,解關(guān)于x的不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣ ﹣2lnx,a∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)有兩個極值點x1 , x2 , 且x1<x2 , ①求a的取值范圍;
②證明:f(x2)<x2﹣1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,D、F分別是BC、AC的中點, = , = =
(1)用 表示向量 、 、 、 ;
(2)求證:B、E、F三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A,B兩名同學(xué)在5次數(shù)學(xué)考試中的成績統(tǒng)計如下面的莖葉圖所示,若A,B兩人的平均成績分別是xA , xB , 觀察莖葉圖,下列結(jié)論正確的是(
A.xA<xB , B比A成績穩(wěn)定
B.xA>xB , B比A成績穩(wěn)定
C.xA<xB , A比B成績穩(wěn)定
D.xA>xB , A比B成績穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)f(x)在(﹣∞,0)∪(0,+∞)上有定義,在(0,+∞)上是增函數(shù),f(1)=0,又知函數(shù)g(θ)=sin2θ+mcosθ﹣2m, ,集合M={m|恒有g(shù)(θ)<0},N={m|恒有f(g(θ))<0},求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

求函數(shù)的單調(diào)區(qū)間

當(dāng)時,若函數(shù)在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某養(yǎng)雞場是一面靠墻,三面用鐵絲網(wǎng)圍成的矩形場地,如果鐵絲網(wǎng)長40m,那么圍成的場地面積最大為多少?

查看答案和解析>>

同步練習(xí)冊答案