【題目】如圖,在同一個平面內(nèi),向量 , , 的模分別為1,1, , 與 的夾角為α,且tanα=7, 與 的夾角為45°.若 =m +n (m,n∈R),則m+n= .
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四面體ABCD中,AB,BC,CD兩兩互相垂直,且BC=CD=1.
(1)求證:平面ACD⊥平面ABC;
(2)求二面角C-AB-D的大小;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PB上,PD∥平面MAC,PA=PD= ,AB=4.(14分)
(1)求證:M為PB的中點;
(2)求二面角B﹣PD﹣A的大小;
(3)求直線MC與平面BDP所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直棱柱ABC-A1B1C1的底面△ABC中,CA=CB=1,∠ACB=90°,棱AA1=2,如圖,以C為原點,分別以CA,CB,CC1為x,y,z軸建立空間直角坐標系.
(1)求平面A1B1C的法向量;
(2)求直線AC與平面A1B1C夾角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(cosx,sinx), =(3,﹣ ),x∈[0,π].
(Ⅰ)若 ∥ ,求x的值;
(Ⅱ)記f(x)= ,求f(x)的最大值和最小值以及對應的x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在底面為平行四邊形的四棱錐O-ABCD中,BC⊥平面OAB,E為OB中點,OA=AD=2AB=2,OB=.
(1)求證:平面OAD⊥平面ABCD;
(2)求二面角B-AC-E的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com