【題目】如圖,在同一個平面內(nèi),向量 , , 的模分別為1,1, 的夾角為α,且tanα=7, 的夾角為45°.若 =m +n (m,n∈R),則m+n=

【答案】3
【解析】解:如圖所示,建立直角坐標系.A(1,0).
的夾角為α,且tanα=7.
∴cosα= ,sinα=
∴C
cos(α+45°)= (cosα﹣sinα)=
sin(α+45°)= (sinα+cosα)=
∴B
=m +n (m,n∈R),
=m﹣ n, =0+ n,
解得n= ,m=
則m+n=3.
故答案為:3.

如圖所示,建立直角坐標系.A(1,0).由 的夾角為α,且tanα=7.可得cosα= ,sinα= .C .可得cos(α+45°)= .sin(α+45°)= .B .利用 =m +n (m,n∈R),即可得出.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四面體ABCD中,AB,BC,CD兩兩互相垂直,且BC=CD=1.

(1)求證:平面ACD平面ABC;

(2)求二面角C-AB-D的大小;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列的公差不為零,,且成等比數(shù)列.

(1)求的通項公式;

(2)求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PB上,PD∥平面MAC,PA=PD= ,AB=4.(14分)
(1)求證:M為PB的中點;
(2)求二面角B﹣PD﹣A的大小;
(3)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直棱柱ABC-A1B1C1的底面ABC中,CA=CB=1,ACB=90°,棱AA1=2,如圖,以C為原點,分別以CA,CB,CC1x,y,z軸建立空間直角坐標系.

(1)求平面A1B1C的法向量;

(2)求直線AC與平面A1B1C夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(cosx,sinx), =(3,﹣ ),x∈[0,π].
(Ⅰ)若 ,求x的值;
(Ⅱ)記f(x)= ,求f(x)的最大值和最小值以及對應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在底面為平行四邊形的四棱錐O-ABCD,BC⊥平面OAB,EOB中點,OA=AD=2AB=2,OB=.

(1)求證:平面OAD⊥平面ABCD;

(2)求二面角B-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線.

(1)證明:對任意實數(shù),直線恒過定點且與圓交于兩個不同點;

(2)求直線被圓截得的弦長最小時的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,分別是的中點.

(1)求證:平面;

(2)過點作一個截面,使平面平面,并證明.

查看答案和解析>>

同步練習冊答案