設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F,在x軸上F的右側(cè)有一點(diǎn)A,以FA為直徑的圓與橢圓在x軸上方部分交于M、N兩點(diǎn),則
|FM|+|FN|
|FA|
的值為( 。
A、
a
a2-b2
B、
a
a2+b2
C、
a
2
a2-b2
D、
a
2
a2+b2
分析:若以FA為直徑的圓與橢圓大x軸上方的部分交于短軸端點(diǎn),則M、N重合(設(shè)為M),此時(shí)A為橢圓的右焦點(diǎn),由此可知
|FM|+|FN|
|FA|
=
2|FM|
|FA|
=
2a
2c
,從而能夠得到結(jié)果.
解答:解:若以FA為直徑的圓與橢圓大x軸上方的部分交于短軸端點(diǎn),
則M、N重合(設(shè)為M),此時(shí)A為橢圓的右焦點(diǎn),則
|FM|+|FN|
|FA|
=
2|FM|
|FA|
=
2a
2c
=
a
a2-b2

故選A.
點(diǎn)評(píng):本題考查圓錐曲線的性質(zhì)和應(yīng)用,解題時(shí)要注意合理地選取特殊點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,A是橢圓上的一點(diǎn),C,原點(diǎn)O到直線AF1的距離為
1
3
|OF1|

(Ⅰ)證明a=
2
b

(Ⅱ)求t∈(0,b)使得下述命題成立:設(shè)圓x2+y2=t2上任意點(diǎn)M(x0,y0)處的切線交橢圓于Q1,Q2兩點(diǎn),則OQ1⊥OQ2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上的動(dòng)點(diǎn)Q,過動(dòng)點(diǎn)Q作橢圓的切線l,過右焦點(diǎn)作l的垂線,垂足為P,則點(diǎn)P的軌跡方程為( 。
A、x2+y2=a2
B、x2+y2=b2
C、x2+y2=c2
D、x2+y2=e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是橢圓
x2a2
+y2=1   (a>1)
短軸的一個(gè)端點(diǎn),Q為橢圓上一個(gè)動(dòng)點(diǎn),求|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•即墨市模擬)設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,右焦點(diǎn)為F(c,0),方程ax2+bx-c=0的兩個(gè)實(shí)根分別為x1和x2,則點(diǎn)P(x1,x2)(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)-1<a<-
1
2
,則橢圓
x2
a2
+
y2
(a+1)2
=1
的離心率的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案