已知函數(shù)f(x)=
1-x
ax
+lnx

(Ⅰ)若函數(shù)f(x)在[1,+∞)上是增函數(shù),求正實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=1時(shí),求函數(shù)f(x)在[
1
2
,2]
上的最大值和最小值;
(Ⅲ)當(dāng)a=1時(shí),對(duì)任意的正整數(shù)n>1,求證:f(
n
n-1
)>0
,且不等式lnn>Inn>
1
2
+
1
3
+
1
4
+…+
1
n
都成立.
分析:(I)求導(dǎo)函數(shù),利用函數(shù)f(x)在[1,+∞)上是增函數(shù),可得當(dāng)x∈[1,+∞)時(shí),不等式a≥
1
x
恒成立,求出
1
x
的最大值,即可得到實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=1時(shí),f′(x)=
x-1
x2
確定函數(shù)f(x)在[
1
2
,2]
上的單調(diào)性,即可求得函數(shù)的最大值與最小值;
(Ⅲ)當(dāng)a=1時(shí),由(Ⅰ)知f(x)=
1-x
x
+lnx
在[1,+∞)上是增函數(shù),可證明ln
n
n-1
1
n
,疊加,即可證得結(jié)論.
解答:(I)解:由題設(shè)可得f′(x)=
ax-1
ax2
(a>0)

∵函數(shù)f(x)在[1,+∞)上是增函數(shù),
∴當(dāng)x∈[1,+∞)時(shí),不等式f′(x)=
ax-1
ax2
≥0
a≥
1
x
恒成立.
∵當(dāng)x∈[1,+∞)時(shí),
1
x
的最大值為1,∴實(shí)數(shù)a的取值范圍是[1,+∞);------------(4分)
(Ⅱ)解:當(dāng)a=1時(shí),f′(x)=
x-1
x2

∴當(dāng)x∈[
1
2
,1)
時(shí),f'(x)<0,于是f(x)在[
1
2
,1)
上單調(diào)遞減;
當(dāng)x∈(1,2]時(shí),f'(x)>0,于是f(x)在(1,2]上單調(diào)遞增.
f(
1
2
)-f(2)=
3
2
-2ln2=
lne3-ln16
2
>0⇒f(
1
2
)>f(2)

綜上所述,當(dāng)x=1時(shí),函數(shù)f(x)在[
1
2
,2]
上的最小值為f(1)=0,當(dāng)x=
1
2
時(shí),
函數(shù)f(x)在[
1
2
,2]
上的最大值為f(
1
2
)=1-ln2
--------------------(8分)
(Ⅲ)證明:當(dāng)a=1時(shí),由(Ⅰ)知f(x)=
1-x
x
+lnx
在[1,+∞)上是增函數(shù)
∴對(duì)于任意的正整數(shù)n>1,有
n
n-1
>1
,則f(
n
n-1
)>f(1)=0
--------------(10分)
f(
n
n-1
)=
1-
n
n-1
n
n-1
+ln
n
n-1
=-
1
n
+ln
n
n-1
>0

ln
n
n-1
1
n

ln
2
1
+ln
3
2
+ln
4
3
+…+ln
n
n-1
1
2
+
1
3
+
1
4
+…+
1
n

ln
2
1
+ln
3
2
+ln
4
3
+…+ln
n
n-1
=lnn
,
lnn>
1
2
+
1
3
+
1
4
+…+
1
n
成立----------(12分)
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查函數(shù)的最值,考查不等式的證明,解題的關(guān)鍵是確定函數(shù)的單調(diào)性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),則實(shí)數(shù)x的取值范圍是( 。
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1,x∈Q
0,x∉Q
,則f[f(π)]=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0)

(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=1時(shí),求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)當(dāng)a=1時(shí),求證對(duì)任意大于1的正整數(shù)n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,則下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1+logax(a>0,a≠1),滿足f(9)=3,則f-1(log92)的值是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案