<nobr id="z8b6a"><div id="z8b6a"><tfoot id="z8b6a"></tfoot></div></nobr>
<tfoot id="z8b6a"></tfoot>
<small id="z8b6a"></small>
<li id="z8b6a"><video id="z8b6a"><menuitem id="z8b6a"></menuitem></video></li>
過兩點A(5,2)和B(3,-2),圓心在直線2x-y=3上的圓的方程為__________.

解析:設(shè)圓心C(a,2a-3),利用|AC|=|BC|a=2,故所求圓的方程為(x-2)2+(y-1)2=10.

答案:(x-2)2+(y-1)2=10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1
的離心率e=
2
3
3
,過點A(0,-b)和B(a,0)的直線與原點的距離為
3
2

(1)求雙曲線方程;
(2)直線y=kx+5(k≠0)與雙曲線交于不同的兩點C、D,且C、D兩點都在以A為圓心的同一個圓上,求k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在xOy坐標(biāo)平面內(nèi),已知圓C過點A(1,1)和點B(1,5),且圓心C在直線2x+y-2=0上.
(1)求圓C的方程;
(2)求過點A且與圓C相切的直線方程;
(3)已知斜率為-1的直線l與圓C相交于P,Q兩點,且CP⊥CQ,試求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求滿足下列條件的直線方程,并化為一般式
(1)經(jīng)過兩點A(0,4)和B(4,0);
(2)經(jīng)過點(-
2
,-
3
),與x軸平行;
(3)在x軸上的截距為4,斜率為直線y=
1
2
x-3
的斜率的相反數(shù);
(4)經(jīng)過點(1,2),且與直線x-y+5=0垂直;
(5)過l1:3x-5y-10=0和l2:x+y+1=0的交點,且平行于l3:x+2y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•南匯區(qū)二模)設(shè)F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,其右焦點是直線y=x-1與x軸的交點,短軸的長是焦距的2倍.
(1)求橢圓的方程;
(2)若P是該橢圓上的一個動點,求
PF1
PF2
的最大值和最小值;
(3)是否存在過點A(5,0)的直線l與橢圓交于不同的兩點C、D,使得|F2C|=|F2D|?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案