條件.
【答案】分析:題目中的x和y明顯有對(duì)稱性,即x和y可以互換題目不變,顯然后者可以推出前者.
解答:解:由可得,也得到的必要不充分條件.
故答案為:必要不充分條件.
點(diǎn)評(píng):方法不好,那么這就是一道難度較大的題目,如果沒(méi)發(fā)現(xiàn)x和y有對(duì)稱性,只能用特殊值或線性規(guī)劃來(lái)解,都是比較復(fù)雜的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列是以d為公差的等差數(shù)列,數(shù)列是以q為公比的等比數(shù)列.
(1)若數(shù)列的前n項(xiàng)和為Sn,且a1=b1=d=2,S3<a1004+5b2-2012,求整數(shù)q的值;
(2)在(1)的條件下,試問(wèn)數(shù)列中是否存在一項(xiàng)bk,使得bk恰好可以表示為該數(shù)列中連續(xù)p(p∈N,p≥2)項(xiàng)的和?請(qǐng)說(shuō)明理由;
(3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的約數(shù)),求證:數(shù)列中每一項(xiàng)都是數(shù)列中的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)圓x2+y2-2x-2y+1=0的切線l交兩坐標(biāo)軸于A(a,0),B(0,b),(ab≠0).
(1)求a,b應(yīng)滿足的條件;
(2)求線段AB中點(diǎn)的軌跡方程;
(3)若a>2,b>2,求△AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正三棱柱ABC-A1B1C1的各條棱長(zhǎng)都為a,P為A1B上的點(diǎn).
(1)試確定
A1P
PB
的值,使得PC⊥AB;
(2)若
A1P
PB
=
2
3
,求二面角P-AC-B的大。
(3)在(2)的條件下,求C1到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

全國(guó)各地提倡低碳生活,漣源某商場(chǎng)響應(yīng)號(hào)召,把商場(chǎng)代理的名牌節(jié)能電視機(jī)每臺(tái)降價(jià)x成(1成即為10%)進(jìn)行優(yōu)惠銷(xiāo)售,此時(shí)發(fā)現(xiàn)售出的電視機(jī)數(shù)量增加了mx成(m∈R,且m為常數(shù)).
(1)若商場(chǎng)現(xiàn)定價(jià)每臺(tái)節(jié)能電視機(jī)為a元,售出量為b臺(tái),試建立降價(jià)后的營(yíng)業(yè)額y與x之間的函數(shù)關(guān)系式.若m=
54
,營(yíng)業(yè)額增加1.25%,每臺(tái)降價(jià)多少?
(2)為使?fàn)I業(yè)額增加,當(dāng)x=x0(0<x0<10)時(shí),求m應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f (x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2
3
cos2(x+
θ
2
)-
3

(1)化簡(jiǎn)f (x)的解析式;
(2)若0≤θ≤π,求θ使函數(shù)f (x)為偶函數(shù);
(3)在(2)成立的條件下,求滿足f (x)=1,x∈[-π,π]的x的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案