已知函數(shù)f(x)=.
(1)確定yf(x)在(0,+∞)上的單調(diào)性;
(2)若a>0,函數(shù)h(x)=xf(x)-xax2在(0,2)上有極值,求實(shí)數(shù)a的取值范圍.

(1)在(0,e]上單調(diào)遞增,在[e,+∞)上單調(diào)遞減.(2)a>-(3)(0,+∞)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的極值;
(2)定義:若函數(shù)在區(qū)間上的取值范圍為,則稱區(qū)間為函數(shù)的“域同區(qū)間”.試問函數(shù)上是否存在“域同區(qū)間”?若存在,求出所有符合條件的“域同區(qū)間”;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),函數(shù)的導(dǎo)函數(shù),且,其中為自然對數(shù)的底數(shù).
(1)求的極值;
(2)若,使得不等式成立,試求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),對于,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)記函數(shù)的圖象為曲線,設(shè)點(diǎn)是曲線上的不同兩點(diǎn).如果在曲線上存在點(diǎn),使得:①;②曲線在點(diǎn)處的切線平行于直線,則稱函數(shù)存在“中值相依切線”,試問:函數(shù)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求的值;
(2)求上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ln(x+1)-x2x.
(1)若關(guān)于x的方程f(x)=-xb在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
(2)證明:對任意的正整數(shù)n,不等式2++…+ >ln(n+1)都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù),其中為實(shí)常數(shù)。
(1)討論的單調(diào)性;
(2)不等式上恒成立,求實(shí)數(shù)的取值范圍;
(3)若,設(shè),。是否存在實(shí)常數(shù),既使又使對一切恒成立?若存在,試找出的一個(gè)值,并證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)=a(x-5)2+6ln x,其中a∈R,曲線yf(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)若函數(shù)處取得極值,求實(shí)數(shù)的值;
(2)若,求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案