設(shè)f(x)=-x2+bx+c,若關(guān)于x的不等式f(x-1)≥0的解集為[0,1],則關(guān)于x的不等式f(x+1)≤0的解集為( 。
A、[2,3]
B、(-∞,2]∪[3,+∞)
C、[-2,-1]
D、(-∞,-2]∪[-1,+∞)
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)二次函數(shù)與不等式之間的關(guān)系,以及函數(shù)之間的平移關(guān)系即可得到結(jié)論.
解答: 解:不等式f(x-1)≥0的解集為[0,1],
∴不等式f(x-1)≤0的解集為{x|x≤0或x≥1},
將f(x-1)向左平移2個單位得到f(x+1),此時f(x+1)≤0的解集為{x|x≤-2或x≥-1},
即(-∞,-2]∪[-1,+∞),
故選:D.
點(diǎn)評:本題主要考查二次函數(shù)和二次不等式之間的關(guān)系,以及函數(shù)圖象之間的平移關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-|x+a|+2a<0,a∈R},B={x|x<2}.若A≠∅且A⊆B,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知g′(x)是函數(shù)g(x)的導(dǎo)函數(shù),且f(x)=g′(x),下列命題中,真命題是( 。
A、若f(x)是奇函數(shù),則g(x)必是偶函數(shù)
B、若f(x)是偶函數(shù),則g(x)必是奇函數(shù)
C、若f(x)是周期函數(shù),則g(x)必是周期函數(shù)
D、若f(x)是單調(diào)函數(shù),則g(x)必是單調(diào)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2為橢圓C1
x2
a2
+
y2
b2
=1(a>b>0與雙曲線C2的公共點(diǎn)左右焦點(diǎn),它們在第一象限內(nèi)交于點(diǎn)M,△MF1F2是以線段MF1為底邊的等腰三角形,且|MF1|=2.若橢圓C1的離心率e∈[
3
8
,
4
9
],則雙曲線C2的離心率取值范圍是( 。
A、[
5
4
5
3
]
B、[
3
2
,+∞)
C、(1,4]
D、[
3
2
,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的k值是( 。
A、8B、7C、6D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[0,1]上任取三個數(shù)x,y,z,若向量
m
=(x,y,z),則事件|
m
|≥1發(fā)生的概率是( 。
A、
π
12
B、1-
π
6
C、1-
π
12
D、
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的虛軸長是實軸長的2倍,則此雙曲線的離心率為( 。
A、
2
B、2
C、
3
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c.已知b2+c2=a2+bc.
(Ⅰ)求A的大;
(Ⅱ)如果cosB=
6
3
,b=2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x+a)ex,其中A為常數(shù).
(Ⅰ)若函數(shù)f(x)是區(qū)間[-3,+∞)上的增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)若f(x)≥e2在x∈[0,2]時恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案