拋擲一個(gè)骰子,若擲出5點(diǎn)或6點(diǎn)就說試驗(yàn)成功,則在3次試驗(yàn)中恰有2次成功的概率為
 
考點(diǎn):互斥事件的概率加法公式,n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率
專題:概率與統(tǒng)計(jì)
分析:先求出每次試驗(yàn)成功的概率,再根據(jù)n次獨(dú)立重復(fù)實(shí)驗(yàn)中恰好發(fā)生k次的概率公式,運(yùn)算求得結(jié)果.
解答: 解:每次試驗(yàn)成功的概率等于
2
6
=
1
3
,
在3次試驗(yàn)中成功2次的概率為
C
2
3
•(
1
3
)2
•(1-
1
3
)
=
2
9

故答案為:
2
9
點(diǎn)評:本題主要考查n次獨(dú)立重復(fù)實(shí)驗(yàn)中恰好發(fā)生k次的概率,等可能事件的概率,求出每次試驗(yàn)成功的概率,是解題的突破口.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一只不透明的袋子中裝有顏色分別為紅、黃、藍(lán)、白的球各一個(gè),這些球除顏色外都相同.
(1)求攪勻后從中任意摸出1個(gè)球,恰好是紅球的概率;
(2)攪勻后從中任意摸出1個(gè)球,記錄下顏色后放回袋子中并攪勻,再從中任意摸出1個(gè)球,求至少有一次摸出的球是紅球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知甲盒內(nèi)有大小相同的1個(gè)紅球和3個(gè)黑球,乙盒內(nèi)有大小相同的3個(gè)紅球和3個(gè)黑球,現(xiàn)從甲、乙兩個(gè)盒內(nèi)各任取2個(gè)球.
(Ⅰ)求取出的4個(gè)球中沒有紅球的概率;
(Ⅱ)求取出的4個(gè)球中恰有1個(gè)紅球的概率;
(Ⅲ)設(shè)ξ為取出的4個(gè)球中紅球的個(gè)數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列等式:1=12,1+2+1=22,1+2+3+2+1=32,…由此猜想第n個(gè)等式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-2,4),B(4,2),直線l:ax-y+8-a=0,若直線l與直線AB平行,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)樣本a,3,5,7的平均數(shù)是4,則這個(gè)樣本的方差是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的極坐標(biāo)方程是ρ=4cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是
x=
2
2
t+m
y=
2
2
t
(t是參數(shù)).
(Ⅰ)將曲線C的極坐標(biāo)方程和直線l的參數(shù)方程分別化為直角坐標(biāo)方程和普通方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點(diǎn),且|
AB
|=
14
,試求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱柱ABC-A1B1C1底面是邊長為
6
的正三角形,側(cè)棱垂直于底面,且該三棱柱的外接球表面積為12π,則該三棱柱的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間7個(gè)點(diǎn)最多能確定
 
對異面直線.

查看答案和解析>>

同步練習(xí)冊答案