如果棱臺(tái)的兩底面積分別是S、S',中截面(過棱臺(tái)高的中點(diǎn)且平行于底面的截面)的面積是S求證:
【答案】分析:根據(jù)棱臺(tái)的兩底面與中截面是相似的,設(shè)出上底和下底的邊長,表示出中截面的邊長,根據(jù)相似多邊形的面積之比等于邊長比的平方,表示出邊長,得到結(jié)果.
解答:證明:設(shè)上底和下底的邊長分別是a,b,
根據(jù)在側(cè)面上三條邊組成梯形的上底,下底和中位線,
得到梯形的中位線長度是,
∵棱臺(tái)的兩底面與中截面是相似的,
∴三個(gè)面積之比等于邊長之比的平方,
即s=λa2,①
s=λb2,②

把三個(gè)式子兩邊開方,
a+b=,
,

點(diǎn)評(píng):本題考查棱臺(tái)的結(jié)構(gòu)特征,考查相似多邊形的面積之比等于相似比的平方,考查等量代換,是一個(gè)比較簡單的綜合題目,這種題目可以出現(xiàn)在解答題目的某一問中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果棱臺(tái)的兩底面積分別是S,S′,中截面的面積是S0,那么( 。
A、2
S0
=
S
+
S′
B、S0=
S′S
C、2S0=S+S′
D、S02=2S'S

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果棱臺(tái)的兩底面積分別是S、S',中截面(過棱臺(tái)高的中點(diǎn)且平行于底面的截面)的面積是S0求證:2
S0
=
S
+
S′

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如果棱臺(tái)的兩底面積分別是S、S',中截面(過棱臺(tái)高的中點(diǎn)且平行于底面的截面)的面積是S0求證:2
S0
=
S
+
S′

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:1998年全國統(tǒng)一高考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

如果棱臺(tái)的兩底面積分別是S,S′,中截面的面積是S,那么( )
A.2
B.S=
C.2S=S+S′
D.S2=2S'S

查看答案和解析>>

同步練習(xí)冊(cè)答案