【答案】
分析:(1)根據(jù)增函數(shù)的奇偶性,單調(diào)性的定義證明
(2)由(1)知,函數(shù)f(x)既是R上的奇函數(shù),∴f(0)=0,f(2t
2-4)+f(4m-2t)>f(0)可轉(zhuǎn)化為f(2t
2-4)>-f(4m-2t),即f(2t
2-4)>f(2t-4m),
又函數(shù)f(x)是R上的增函數(shù),∴2t
2-4>2t-4m,即2t
2-4-2t+4m>0,
法一:令g(t)=2t
2-2t+4m-4,t∈[0,1],只需g(t)min>0即可
法二:分離參數(shù)m,即m>
,t∈[0,1]令g(t)=
,只需m>g(t)max即可.
解答:解:(1)顯然函數(shù)的定義域為R,對任意x∈R,都有f(-x)=
=
=-
=-f(x)
所以函數(shù)f(x)既是R上的奇函數(shù).
設(shè)x
1,x
2∈R,且x
1<x
2,則f(x
1)-f(x
2)=
-
=
=
x
1x
2,∵函數(shù)y=2
x是R上的增函數(shù),且x
1<x
2,∴
,
,f(x
1)-f(x
2)<0.即f(x
1)<f(x
2),
∴f(x)是R上的增函數(shù);
(2)法一:由(1)知,函數(shù)f(x)既是R上的奇函數(shù),∴f(0)=0,f(2t
2-4)+f(4m-2t)>f(0)可轉(zhuǎn)化為f(2t
2-4)>-f(4m-2t),即f(2t
2-4)>f(2t-4m),
又函數(shù)f(x)是R上的增函數(shù),∴2t
2-4>2t-4m,即2t
2-4-2t+4m>0,令g(t)=2t
2-2t+4m-4,t∈[0,1],拋物線g(t)=2t
2-2t+4m-4的開口向上,對稱軸是t=
,且
,所以g(t)min=g(
)=4m-
,故只需4m-
,>0即可,解得
.
法二:由(1)知,函數(shù)f(x)既是R上的奇函數(shù),∴f(0)=0,f(2t
2-4)+f(4m-2t)>f(0)可轉(zhuǎn)化為f(2t
2-4)>-f(4m-2t),即f(2t
2-4)>f(2t-4m),
又函數(shù)f(x)是R上的增函數(shù),∴2t
2-4>2t-4m,即2t
2-4-2t+4m>0,即m>
,t∈[0,1]令g(t)=
,拋物線g(t)=
,的開口向下,對稱軸是t=
,且
,所以g(t)max=g(
)=
,故只需
.
存在
.使f(2t
2-4)+f(4m-2t)>f(0)對任意t∈[0,1]均成立.
點評:本題主要考查函數(shù)的奇偶性和單調(diào)性,二次函數(shù)的最值鞥基礎(chǔ)知識,考查函數(shù)與方程,劃歸與轉(zhuǎn)化,分類與整合的數(shù)學(xué)思想方法,以及抽象概括、推理論證和運算求解能力.