【題目】如圖,拋物線(xiàn)關(guān)于軸對(duì)稱(chēng),它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)、、均在拋物線(xiàn)上.
(1)寫(xiě)出該拋物線(xiàn)的方程及其準(zhǔn)線(xiàn)方程;
(2)當(dāng)與的斜率存在且傾斜角互補(bǔ)時(shí),求的值及直線(xiàn)的斜率.
【答案】(1)拋物線(xiàn)的方程是, 準(zhǔn)線(xiàn)方程是.;(2)1.
【解析】
試題分析:(I)設(shè)出拋物線(xiàn)的方程,把點(diǎn)P代入拋物線(xiàn)求得p則拋物線(xiàn)的方程可得,進(jìn)而求得拋物線(xiàn)的準(zhǔn)線(xiàn)方程.
(2)設(shè)直線(xiàn)PA的斜率為,直線(xiàn)PB的斜率為,則可分別表示和,根據(jù)傾斜角互補(bǔ)可知,進(jìn)而求得的值,把A,B代入拋物線(xiàn)方程兩式相減后即可求得直線(xiàn)AB的斜率.
試題解析:(I)由已知條件,可設(shè)拋物線(xiàn)的方程為
因?yàn)辄c(diǎn)在拋物線(xiàn)上,所以,得. 2分
故所求拋物線(xiàn)的方程是, 準(zhǔn)線(xiàn)方程是. 4分
(2)設(shè)直線(xiàn)的方程為,
即:,代入,消去得:
. 5分
設(shè),由韋達(dá)定理得:,即:. 7分
將換成,得,從而得:, 9分
直線(xiàn)的斜率. 12分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校針對(duì)校食堂飯菜質(zhì)量開(kāi)展問(wèn)卷調(diào)查,提供滿(mǎn)意與不滿(mǎn)意兩種回答,調(diào)查結(jié)果如下表(單位:人):
學(xué)生 | 高一 | 高二 | 高三 |
滿(mǎn)意 | 500 | 600 | 800 |
不滿(mǎn)意 | 300 | 200 | 400 |
(1)求從所有參與調(diào)查的人中任選1人是高三學(xué)生的概率;
(2)從參與調(diào)查的高三學(xué)生中,用分層抽樣的方法抽取6人,在這6人中任意選取2人,求這兩人對(duì)校食堂飯菜質(zhì)量都滿(mǎn)意的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),雙曲線(xiàn)上有兩點(diǎn)滿(mǎn)足,且點(diǎn)到直線(xiàn)的距離為,則雙曲線(xiàn)的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè){an}和{bn}是兩個(gè)等差數(shù)列,記cn=max{b1-a1n,b2-a2n,…,bn-ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs這s個(gè)數(shù)中最大的數(shù).
(Ⅰ)若an=n,bn=2n-1,求c1,c2,c3的值,并證明{cn}是等差數(shù)列;
(Ⅱ)證明:或者對(duì)任意正數(shù)M,存在正整數(shù)m,當(dāng)n≥m時(shí), >M;或者存在正整數(shù)m,使得cm,cm+1,cm+2,…是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)對(duì)定義域內(nèi)的每一個(gè)值,在其定義域內(nèi)都存在唯一的,使成立,則該函數(shù)為“依附函數(shù)”.
(1)判斷函數(shù)是否為“依附函數(shù)”,并說(shuō)明理由;
(2)若函數(shù)在定義域上“依附函數(shù)”,求的取值范圍;
(3)已知函數(shù)在定義域上為“依附函數(shù)”.若存在實(shí)數(shù),使得對(duì)任意的,不等式都成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)為圓上一動(dòng)點(diǎn),軸于點(diǎn),記線(xiàn)段的中點(diǎn)的運(yùn)動(dòng)軌跡為曲線(xiàn).
(1)求曲線(xiàn)的方程;
(2)直線(xiàn)經(jīng)過(guò)定點(diǎn),且與曲線(xiàn)交于兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從全校參加科技知識(shí)競(jìng)賽初賽的學(xué)生試卷中,抽取一個(gè)樣本,考察競(jìng)賽的成績(jī)分布.將樣本分成5組,繪成頻率分布直方圖(如圖),圖中從左到右各小組的小長(zhǎng)方形的高之比是,最后一組的頻數(shù)是6.請(qǐng)結(jié)合頻率分布直方圖提供的信息,解答下列問(wèn)題:
(1)樣本的容量是多少?
(2)求樣本中成績(jī)?cè)?/span>分的學(xué)生人數(shù);
(3)從樣本中成績(jī)?cè)?/span>90.5分以上的同學(xué)中隨機(jī)地抽取2人參加決賽,求最高分甲被抽到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的一個(gè)頂點(diǎn)為拋物線(xiàn)的頂點(diǎn), , 兩點(diǎn)都在拋物線(xiàn)上,且.
(1)求證:直線(xiàn)必過(guò)一定點(diǎn);
(2)求證: 面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)內(nèi)某汽車(chē)品牌一個(gè)月內(nèi)被消費(fèi)者投訴的次數(shù)用表示,據(jù)統(tǒng)計(jì),隨機(jī)變量的概率分布如下:
0 | 1 | 2 | 3 | |
(1)求的值;
(2)若每個(gè)月被消費(fèi)者投訴的次數(shù)互不影響,求該汽車(chē)品牌在五個(gè)月內(nèi)被消費(fèi)者投訴3次的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com